123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- /* dsytd2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b8 = 0.;
- static doublereal c_b14 = -1.;
- /* Subroutine */ int _starpu_dsytd2_(char *uplo, integer *n, doublereal *a, integer *
- lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal taui;
- extern /* Subroutine */ int _starpu_dsyr2_(char *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal alpha;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_dsymv_(char *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), _starpu_dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), _starpu_xerbla_(char *, integer *
- );
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal */
- /* form T by an orthogonal similarity transformation: Q' * A * Q = T. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the upper or lower triangular part of the */
- /* symmetric matrix A is stored: */
- /* = 'U': Upper triangular */
- /* = 'L': Lower triangular */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* n-by-n upper triangular part of A contains the upper */
- /* triangular part of the matrix A, and the strictly lower */
- /* triangular part of A is not referenced. If UPLO = 'L', the */
- /* leading n-by-n lower triangular part of A contains the lower */
- /* triangular part of the matrix A, and the strictly upper */
- /* triangular part of A is not referenced. */
- /* On exit, if UPLO = 'U', the diagonal and first superdiagonal */
- /* of A are overwritten by the corresponding elements of the */
- /* tridiagonal matrix T, and the elements above the first */
- /* superdiagonal, with the array TAU, represent the orthogonal */
- /* matrix Q as a product of elementary reflectors; if UPLO */
- /* = 'L', the diagonal and first subdiagonal of A are over- */
- /* written by the corresponding elements of the tridiagonal */
- /* matrix T, and the elements below the first subdiagonal, with */
- /* the array TAU, represent the orthogonal matrix Q as a product */
- /* of elementary reflectors. See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* D (output) DOUBLE PRECISION array, dimension (N) */
- /* The diagonal elements of the tridiagonal matrix T: */
- /* D(i) = A(i,i). */
- /* E (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The off-diagonal elements of the tridiagonal matrix T: */
- /* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
- /* TAU (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The scalar factors of the elementary reflectors (see Further */
- /* Details). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* If UPLO = 'U', the matrix Q is represented as a product of elementary */
- /* reflectors */
- /* Q = H(n-1) . . . H(2) H(1). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
- /* A(1:i-1,i+1), and tau in TAU(i). */
- /* If UPLO = 'L', the matrix Q is represented as a product of elementary */
- /* reflectors */
- /* Q = H(1) H(2) . . . H(n-1). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
- /* and tau in TAU(i). */
- /* The contents of A on exit are illustrated by the following examples */
- /* with n = 5: */
- /* if UPLO = 'U': if UPLO = 'L': */
- /* ( d e v2 v3 v4 ) ( d ) */
- /* ( d e v3 v4 ) ( e d ) */
- /* ( d e v4 ) ( v1 e d ) */
- /* ( d e ) ( v1 v2 e d ) */
- /* ( d ) ( v1 v2 v3 e d ) */
- /* where d and e denote diagonal and off-diagonal elements of T, and vi */
- /* denotes an element of the vector defining H(i). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --d__;
- --e;
- --tau;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYTD2", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n <= 0) {
- return 0;
- }
- if (upper) {
- /* Reduce the upper triangle of A */
- for (i__ = *n - 1; i__ >= 1; --i__) {
- /* Generate elementary reflector H(i) = I - tau * v * v' */
- /* to annihilate A(1:i-1,i+1) */
- _starpu_dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1
- + 1], &c__1, &taui);
- e[i__] = a[i__ + (i__ + 1) * a_dim1];
- if (taui != 0.) {
- /* Apply H(i) from both sides to A(1:i,1:i) */
- a[i__ + (i__ + 1) * a_dim1] = 1.;
- /* Compute x := tau * A * v storing x in TAU(1:i) */
- _starpu_dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) *
- a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1);
- /* Compute w := x - 1/2 * tau * (x'*v) * v */
- alpha = taui * -.5 * _starpu_ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1)
- * a_dim1 + 1], &c__1);
- _starpu_daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
- 1], &c__1);
- /* Apply the transformation as a rank-2 update: */
- /* A := A - v * w' - w * v' */
- _starpu_dsyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1,
- &tau[1], &c__1, &a[a_offset], lda);
- a[i__ + (i__ + 1) * a_dim1] = e[i__];
- }
- d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];
- tau[i__] = taui;
- /* L10: */
- }
- d__[1] = a[a_dim1 + 1];
- } else {
- /* Reduce the lower triangle of A */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Generate elementary reflector H(i) = I - tau * v * v' */
- /* to annihilate A(i+2:n,i) */
- i__2 = *n - i__;
- /* Computing MIN */
- i__3 = i__ + 2;
- _starpu_dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ i__ *
- a_dim1], &c__1, &taui);
- e[i__] = a[i__ + 1 + i__ * a_dim1];
- if (taui != 0.) {
- /* Apply H(i) from both sides to A(i+1:n,i+1:n) */
- a[i__ + 1 + i__ * a_dim1] = 1.;
- /* Compute x := tau * A * v storing y in TAU(i:n-1) */
- i__2 = *n - i__;
- _starpu_dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[
- i__], &c__1);
- /* Compute w := x - 1/2 * tau * (x'*v) * v */
- i__2 = *n - i__;
- alpha = taui * -.5 * _starpu_ddot_(&i__2, &tau[i__], &c__1, &a[i__ +
- 1 + i__ * a_dim1], &c__1);
- i__2 = *n - i__;
- _starpu_daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &c__1);
- /* Apply the transformation as a rank-2 update: */
- /* A := A - v * w' - w * v' */
- i__2 = *n - i__;
- _starpu_dsyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1,
- &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1],
- lda);
- a[i__ + 1 + i__ * a_dim1] = e[i__];
- }
- d__[i__] = a[i__ + i__ * a_dim1];
- tau[i__] = taui;
- /* L20: */
- }
- d__[*n] = a[*n + *n * a_dim1];
- }
- return 0;
- /* End of DSYTD2 */
- } /* _starpu_dsytd2_ */
|