123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- /* dpbtf2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b8 = -1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dpbtf2_(char *uplo, integer *n, integer *kd, doublereal *
- ab, integer *ldab, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, i__1, i__2, i__3;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer j, kn;
- doublereal ajj;
- integer kld;
- extern /* Subroutine */ int _starpu_dsyr_(char *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *), _starpu_dscal_(
- integer *, doublereal *, doublereal *, integer *);
- extern logical _starpu_lsame_(char *, char *);
- logical upper;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DPBTF2 computes the Cholesky factorization of a real symmetric */
- /* positive definite band matrix A. */
- /* The factorization has the form */
- /* A = U' * U , if UPLO = 'U', or */
- /* A = L * L', if UPLO = 'L', */
- /* where U is an upper triangular matrix, U' is the transpose of U, and */
- /* L is lower triangular. */
- /* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the upper or lower triangular part of the */
- /* symmetric matrix A is stored: */
- /* = 'U': Upper triangular */
- /* = 'L': Lower triangular */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* KD (input) INTEGER */
- /* The number of super-diagonals of the matrix A if UPLO = 'U', */
- /* or the number of sub-diagonals if UPLO = 'L'. KD >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the upper or lower triangle of the symmetric band */
- /* matrix A, stored in the first KD+1 rows of the array. The */
- /* j-th column of A is stored in the j-th column of the array AB */
- /* as follows: */
- /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
- /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
- /* On exit, if INFO = 0, the triangular factor U or L from the */
- /* Cholesky factorization A = U'*U or A = L*L' of the band */
- /* matrix A, in the same storage format as A. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KD+1. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -k, the k-th argument had an illegal value */
- /* > 0: if INFO = k, the leading minor of order k is not */
- /* positive definite, and the factorization could not be */
- /* completed. */
- /* Further Details */
- /* =============== */
- /* The band storage scheme is illustrated by the following example, when */
- /* N = 6, KD = 2, and UPLO = 'U': */
- /* On entry: On exit: */
- /* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
- /* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
- /* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
- /* Similarly, if UPLO = 'L' the format of A is as follows: */
- /* On entry: On exit: */
- /* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
- /* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
- /* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
- /* Array elements marked * are not used by the routine. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kd < 0) {
- *info = -3;
- } else if (*ldab < *kd + 1) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DPBTF2", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Computing MAX */
- i__1 = 1, i__2 = *ldab - 1;
- kld = max(i__1,i__2);
- if (upper) {
- /* Compute the Cholesky factorization A = U'*U. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Compute U(J,J) and test for non-positive-definiteness. */
- ajj = ab[*kd + 1 + j * ab_dim1];
- if (ajj <= 0.) {
- goto L30;
- }
- ajj = sqrt(ajj);
- ab[*kd + 1 + j * ab_dim1] = ajj;
- /* Compute elements J+1:J+KN of row J and update the */
- /* trailing submatrix within the band. */
- /* Computing MIN */
- i__2 = *kd, i__3 = *n - j;
- kn = min(i__2,i__3);
- if (kn > 0) {
- d__1 = 1. / ajj;
- _starpu_dscal_(&kn, &d__1, &ab[*kd + (j + 1) * ab_dim1], &kld);
- _starpu_dsyr_("Upper", &kn, &c_b8, &ab[*kd + (j + 1) * ab_dim1], &kld,
- &ab[*kd + 1 + (j + 1) * ab_dim1], &kld);
- }
- /* L10: */
- }
- } else {
- /* Compute the Cholesky factorization A = L*L'. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Compute L(J,J) and test for non-positive-definiteness. */
- ajj = ab[j * ab_dim1 + 1];
- if (ajj <= 0.) {
- goto L30;
- }
- ajj = sqrt(ajj);
- ab[j * ab_dim1 + 1] = ajj;
- /* Compute elements J+1:J+KN of column J and update the */
- /* trailing submatrix within the band. */
- /* Computing MIN */
- i__2 = *kd, i__3 = *n - j;
- kn = min(i__2,i__3);
- if (kn > 0) {
- d__1 = 1. / ajj;
- _starpu_dscal_(&kn, &d__1, &ab[j * ab_dim1 + 2], &c__1);
- _starpu_dsyr_("Lower", &kn, &c_b8, &ab[j * ab_dim1 + 2], &c__1, &ab[(
- j + 1) * ab_dim1 + 1], &kld);
- }
- /* L20: */
- }
- }
- return 0;
- L30:
- *info = j;
- return 0;
- /* End of DPBTF2 */
- } /* _starpu_dpbtf2_ */
|