123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- /* dormbr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dormbr_(char *vect, char *side, char *trans, integer *m,
- integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau,
- doublereal *c__, integer *ldc, doublereal *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
- char ch__1[2];
- /* Builtin functions */
- /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
- /* Local variables */
- integer i1, i2, nb, mi, ni, nq, nw;
- logical left;
- extern logical _starpu_lsame_(char *, char *);
- integer iinfo;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_dormlq_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- logical notran;
- extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- logical applyq;
- char transt[1];
- integer lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C */
- /* with */
- /* SIDE = 'L' SIDE = 'R' */
- /* TRANS = 'N': Q * C C * Q */
- /* TRANS = 'T': Q**T * C C * Q**T */
- /* If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C */
- /* with */
- /* SIDE = 'L' SIDE = 'R' */
- /* TRANS = 'N': P * C C * P */
- /* TRANS = 'T': P**T * C C * P**T */
- /* Here Q and P**T are the orthogonal matrices determined by DGEBRD when */
- /* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */
- /* P**T are defined as products of elementary reflectors H(i) and G(i) */
- /* respectively. */
- /* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */
- /* order of the orthogonal matrix Q or P**T that is applied. */
- /* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */
- /* if nq >= k, Q = H(1) H(2) . . . H(k); */
- /* if nq < k, Q = H(1) H(2) . . . H(nq-1). */
- /* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */
- /* if k < nq, P = G(1) G(2) . . . G(k); */
- /* if k >= nq, P = G(1) G(2) . . . G(nq-1). */
- /* Arguments */
- /* ========= */
- /* VECT (input) CHARACTER*1 */
- /* = 'Q': apply Q or Q**T; */
- /* = 'P': apply P or P**T. */
- /* SIDE (input) CHARACTER*1 */
- /* = 'L': apply Q, Q**T, P or P**T from the Left; */
- /* = 'R': apply Q, Q**T, P or P**T from the Right. */
- /* TRANS (input) CHARACTER*1 */
- /* = 'N': No transpose, apply Q or P; */
- /* = 'T': Transpose, apply Q**T or P**T. */
- /* M (input) INTEGER */
- /* The number of rows of the matrix C. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix C. N >= 0. */
- /* K (input) INTEGER */
- /* If VECT = 'Q', the number of columns in the original */
- /* matrix reduced by DGEBRD. */
- /* If VECT = 'P', the number of rows in the original */
- /* matrix reduced by DGEBRD. */
- /* K >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension */
- /* (LDA,min(nq,K)) if VECT = 'Q' */
- /* (LDA,nq) if VECT = 'P' */
- /* The vectors which define the elementary reflectors H(i) and */
- /* G(i), whose products determine the matrices Q and P, as */
- /* returned by DGEBRD. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. */
- /* If VECT = 'Q', LDA >= max(1,nq); */
- /* if VECT = 'P', LDA >= max(1,min(nq,K)). */
- /* TAU (input) DOUBLE PRECISION array, dimension (min(nq,K)) */
- /* TAU(i) must contain the scalar factor of the elementary */
- /* reflector H(i) or G(i) which determines Q or P, as returned */
- /* by DGEBRD in the array argument TAUQ or TAUP. */
- /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
- /* On entry, the M-by-N matrix C. */
- /* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */
- /* or P*C or P**T*C or C*P or C*P**T. */
- /* LDC (input) INTEGER */
- /* The leading dimension of the array C. LDC >= max(1,M). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* If SIDE = 'L', LWORK >= max(1,N); */
- /* if SIDE = 'R', LWORK >= max(1,M). */
- /* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
- /* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
- /* blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- --work;
- /* Function Body */
- *info = 0;
- applyq = _starpu_lsame_(vect, "Q");
- left = _starpu_lsame_(side, "L");
- notran = _starpu_lsame_(trans, "N");
- lquery = *lwork == -1;
- /* NQ is the order of Q or P and NW is the minimum dimension of WORK */
- if (left) {
- nq = *m;
- nw = *n;
- } else {
- nq = *n;
- nw = *m;
- }
- if (! applyq && ! _starpu_lsame_(vect, "P")) {
- *info = -1;
- } else if (! left && ! _starpu_lsame_(side, "R")) {
- *info = -2;
- } else if (! notran && ! _starpu_lsame_(trans, "T")) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*k < 0) {
- *info = -6;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = min(nq,*k);
- if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) {
- *info = -8;
- } else if (*ldc < max(1,*m)) {
- *info = -11;
- } else if (*lwork < max(1,nw) && ! lquery) {
- *info = -13;
- }
- }
- if (*info == 0) {
- if (applyq) {
- if (left) {
- /* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *m - 1;
- i__2 = *m - 1;
- nb = _starpu_ilaenv_(&c__1, "DORMQR", ch__1, &i__1, n, &i__2, &c_n1);
- } else {
- /* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *n - 1;
- i__2 = *n - 1;
- nb = _starpu_ilaenv_(&c__1, "DORMQR", ch__1, m, &i__1, &i__2, &c_n1);
- }
- } else {
- if (left) {
- /* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *m - 1;
- i__2 = *m - 1;
- nb = _starpu_ilaenv_(&c__1, "DORMLQ", ch__1, &i__1, n, &i__2, &c_n1);
- } else {
- /* Writing concatenation */
- i__3[0] = 1, a__1[0] = side;
- i__3[1] = 1, a__1[1] = trans;
- s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
- i__1 = *n - 1;
- i__2 = *n - 1;
- nb = _starpu_ilaenv_(&c__1, "DORMLQ", ch__1, m, &i__1, &i__2, &c_n1);
- }
- }
- lwkopt = max(1,nw) * nb;
- work[1] = (doublereal) lwkopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DORMBR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- work[1] = 1.;
- if (*m == 0 || *n == 0) {
- return 0;
- }
- if (applyq) {
- /* Apply Q */
- if (nq >= *k) {
- /* Q was determined by a call to DGEBRD with nq >= k */
- _starpu_dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], lwork, &iinfo);
- } else if (nq > 1) {
- /* Q was determined by a call to DGEBRD with nq < k */
- if (left) {
- mi = *m - 1;
- ni = *n;
- i1 = 2;
- i2 = 1;
- } else {
- mi = *m;
- ni = *n - 1;
- i1 = 1;
- i2 = 2;
- }
- i__1 = nq - 1;
- _starpu_dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
- , &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
- }
- } else {
- /* Apply P */
- if (notran) {
- *(unsigned char *)transt = 'T';
- } else {
- *(unsigned char *)transt = 'N';
- }
- if (nq > *k) {
- /* P was determined by a call to DGEBRD with nq > k */
- _starpu_dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
- c_offset], ldc, &work[1], lwork, &iinfo);
- } else if (nq > 1) {
- /* P was determined by a call to DGEBRD with nq <= k */
- if (left) {
- mi = *m - 1;
- ni = *n;
- i1 = 2;
- i2 = 1;
- } else {
- mi = *m;
- ni = *n - 1;
- i1 = 1;
- i2 = 2;
- }
- i__1 = nq - 1;
- _starpu_dormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda,
- &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &
- iinfo);
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DORMBR */
- } /* _starpu_dormbr_ */
|