123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- /* dlatrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b5 = -1.;
- static doublereal c_b6 = 1.;
- static integer c__1 = 1;
- static doublereal c_b16 = 0.;
- /* Subroutine */ int _starpu_dlatrd_(char *uplo, integer *n, integer *nb, doublereal *
- a, integer *lda, doublereal *e, doublereal *tau, doublereal *w,
- integer *ldw)
- {
- /* System generated locals */
- integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__, iw;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal alpha;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), _starpu_daxpy_(integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *),
- _starpu_dsymv_(char *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *), _starpu_dlarfg_(integer *, doublereal *, doublereal *, integer *,
- doublereal *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLATRD reduces NB rows and columns of a real symmetric matrix A to */
- /* symmetric tridiagonal form by an orthogonal similarity */
- /* transformation Q' * A * Q, and returns the matrices V and W which are */
- /* needed to apply the transformation to the unreduced part of A. */
- /* If UPLO = 'U', DLATRD reduces the last NB rows and columns of a */
- /* matrix, of which the upper triangle is supplied; */
- /* if UPLO = 'L', DLATRD reduces the first NB rows and columns of a */
- /* matrix, of which the lower triangle is supplied. */
- /* This is an auxiliary routine called by DSYTRD. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* Specifies whether the upper or lower triangular part of the */
- /* symmetric matrix A is stored: */
- /* = 'U': Upper triangular */
- /* = 'L': Lower triangular */
- /* N (input) INTEGER */
- /* The order of the matrix A. */
- /* NB (input) INTEGER */
- /* The number of rows and columns to be reduced. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* n-by-n upper triangular part of A contains the upper */
- /* triangular part of the matrix A, and the strictly lower */
- /* triangular part of A is not referenced. If UPLO = 'L', the */
- /* leading n-by-n lower triangular part of A contains the lower */
- /* triangular part of the matrix A, and the strictly upper */
- /* triangular part of A is not referenced. */
- /* On exit: */
- /* if UPLO = 'U', the last NB columns have been reduced to */
- /* tridiagonal form, with the diagonal elements overwriting */
- /* the diagonal elements of A; the elements above the diagonal */
- /* with the array TAU, represent the orthogonal matrix Q as a */
- /* product of elementary reflectors; */
- /* if UPLO = 'L', the first NB columns have been reduced to */
- /* tridiagonal form, with the diagonal elements overwriting */
- /* the diagonal elements of A; the elements below the diagonal */
- /* with the array TAU, represent the orthogonal matrix Q as a */
- /* product of elementary reflectors. */
- /* See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= (1,N). */
- /* E (output) DOUBLE PRECISION array, dimension (N-1) */
- /* If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
- /* elements of the last NB columns of the reduced matrix; */
- /* if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
- /* the first NB columns of the reduced matrix. */
- /* TAU (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The scalar factors of the elementary reflectors, stored in */
- /* TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
- /* See Further Details. */
- /* W (output) DOUBLE PRECISION array, dimension (LDW,NB) */
- /* The n-by-nb matrix W required to update the unreduced part */
- /* of A. */
- /* LDW (input) INTEGER */
- /* The leading dimension of the array W. LDW >= max(1,N). */
- /* Further Details */
- /* =============== */
- /* If UPLO = 'U', the matrix Q is represented as a product of elementary */
- /* reflectors */
- /* Q = H(n) H(n-1) . . . H(n-nb+1). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
- /* and tau in TAU(i-1). */
- /* If UPLO = 'L', the matrix Q is represented as a product of elementary */
- /* reflectors */
- /* Q = H(1) H(2) . . . H(nb). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
- /* and tau in TAU(i). */
- /* The elements of the vectors v together form the n-by-nb matrix V */
- /* which is needed, with W, to apply the transformation to the unreduced */
- /* part of the matrix, using a symmetric rank-2k update of the form: */
- /* A := A - V*W' - W*V'. */
- /* The contents of A on exit are illustrated by the following examples */
- /* with n = 5 and nb = 2: */
- /* if UPLO = 'U': if UPLO = 'L': */
- /* ( a a a v4 v5 ) ( d ) */
- /* ( a a v4 v5 ) ( 1 d ) */
- /* ( a 1 v5 ) ( v1 1 a ) */
- /* ( d 1 ) ( v1 v2 a a ) */
- /* ( d ) ( v1 v2 a a a ) */
- /* where d denotes a diagonal element of the reduced matrix, a denotes */
- /* an element of the original matrix that is unchanged, and vi denotes */
- /* an element of the vector defining H(i). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Quick return if possible */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --e;
- --tau;
- w_dim1 = *ldw;
- w_offset = 1 + w_dim1;
- w -= w_offset;
- /* Function Body */
- if (*n <= 0) {
- return 0;
- }
- if (_starpu_lsame_(uplo, "U")) {
- /* Reduce last NB columns of upper triangle */
- i__1 = *n - *nb + 1;
- for (i__ = *n; i__ >= i__1; --i__) {
- iw = i__ - *n + *nb;
- if (i__ < *n) {
- /* Update A(1:i,i) */
- i__2 = *n - i__;
- _starpu_dgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) *
- a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
- c_b6, &a[i__ * a_dim1 + 1], &c__1);
- i__2 = *n - i__;
- _starpu_dgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) *
- w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b6, &a[i__ * a_dim1 + 1], &c__1);
- }
- if (i__ > 1) {
- /* Generate elementary reflector H(i) to annihilate */
- /* A(1:i-2,i) */
- i__2 = i__ - 1;
- _starpu_dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 +
- 1], &c__1, &tau[i__ - 1]);
- e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
- a[i__ - 1 + i__ * a_dim1] = 1.;
- /* Compute W(1:i-1,i) */
- i__2 = i__ - 1;
- _starpu_dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ *
- a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], &
- c__1);
- if (i__ < *n) {
- i__2 = i__ - 1;
- i__3 = *n - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) *
- w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
- c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
- a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
- c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) *
- a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
- c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) *
- w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
- c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
- }
- i__2 = i__ - 1;
- _starpu_dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- alpha = tau[i__ - 1] * -.5 * _starpu_ddot_(&i__2, &w[iw * w_dim1 + 1],
- &c__1, &a[i__ * a_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- _starpu_daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
- w_dim1 + 1], &c__1);
- }
- /* L10: */
- }
- } else {
- /* Reduce first NB columns of lower triangle */
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Update A(i:n,i) */
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda,
- &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], &
- c__1);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw,
- &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], &
- c__1);
- if (i__ < *n) {
- /* Generate elementary reflector H(i) to annihilate */
- /* A(i+2:n,i) */
- i__2 = *n - i__;
- /* Computing MIN */
- i__3 = i__ + 2;
- _starpu_dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+
- i__ * a_dim1], &c__1, &tau[i__]);
- e[i__] = a[i__ + 1 + i__ * a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 1.;
- /* Compute W(i+1:n,i) */
- i__2 = *n - i__;
- _starpu_dsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1]
- , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1],
- ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
- i__ * w_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 +
- a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1],
- lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
- i__ * w_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 +
- w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- _starpu_dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
- i__2 = *n - i__;
- alpha = tau[i__] * -.5 * _starpu_ddot_(&i__2, &w[i__ + 1 + i__ *
- w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
- i__2 = *n - i__;
- _starpu_daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
- i__ + 1 + i__ * w_dim1], &c__1);
- }
- /* L20: */
- }
- }
- return 0;
- /* End of DLATRD */
- } /* _starpu_dlatrd_ */
|