123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610 |
- /* dlasd2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b30 = 0.;
- /* Subroutine */ int _starpu_dlasd2_(integer *nl, integer *nr, integer *sqre, integer
- *k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *
- beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
- doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2,
- integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *
- idxq, integer *coltyp, integer *info)
- {
- /* System generated locals */
- integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
- vt2_dim1, vt2_offset, i__1;
- doublereal d__1, d__2;
- /* Local variables */
- doublereal c__;
- integer i__, j, m, n;
- doublereal s;
- integer k2;
- doublereal z1;
- integer ct, jp;
- doublereal eps, tau, tol;
- integer psm[4], nlp1, nlp2, idxi, idxj;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer ctot[4], idxjp;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer jprev;
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), _starpu_dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), _starpu_dlaset_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), _starpu_xerbla_(char *,
- integer *);
- doublereal hlftol;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASD2 merges the two sets of singular values together into a single */
- /* sorted set. Then it tries to deflate the size of the problem. */
- /* There are two ways in which deflation can occur: when two or more */
- /* singular values are close together or if there is a tiny entry in the */
- /* Z vector. For each such occurrence the order of the related secular */
- /* equation problem is reduced by one. */
- /* DLASD2 is called from DLASD1. */
- /* Arguments */
- /* ========= */
- /* NL (input) INTEGER */
- /* The row dimension of the upper block. NL >= 1. */
- /* NR (input) INTEGER */
- /* The row dimension of the lower block. NR >= 1. */
- /* SQRE (input) INTEGER */
- /* = 0: the lower block is an NR-by-NR square matrix. */
- /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* The bidiagonal matrix has N = NL + NR + 1 rows and */
- /* M = N + SQRE >= N columns. */
- /* K (output) INTEGER */
- /* Contains the dimension of the non-deflated matrix, */
- /* This is the order of the related secular equation. 1 <= K <=N. */
- /* D (input/output) DOUBLE PRECISION array, dimension(N) */
- /* On entry D contains the singular values of the two submatrices */
- /* to be combined. On exit D contains the trailing (N-K) updated */
- /* singular values (those which were deflated) sorted into */
- /* increasing order. */
- /* Z (output) DOUBLE PRECISION array, dimension(N) */
- /* On exit Z contains the updating row vector in the secular */
- /* equation. */
- /* ALPHA (input) DOUBLE PRECISION */
- /* Contains the diagonal element associated with the added row. */
- /* BETA (input) DOUBLE PRECISION */
- /* Contains the off-diagonal element associated with the added */
- /* row. */
- /* U (input/output) DOUBLE PRECISION array, dimension(LDU,N) */
- /* On entry U contains the left singular vectors of two */
- /* submatrices in the two square blocks with corners at (1,1), */
- /* (NL, NL), and (NL+2, NL+2), (N,N). */
- /* On exit U contains the trailing (N-K) updated left singular */
- /* vectors (those which were deflated) in its last N-K columns. */
- /* LDU (input) INTEGER */
- /* The leading dimension of the array U. LDU >= N. */
- /* VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */
- /* On entry VT' contains the right singular vectors of two */
- /* submatrices in the two square blocks with corners at (1,1), */
- /* (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
- /* On exit VT' contains the trailing (N-K) updated right singular */
- /* vectors (those which were deflated) in its last N-K columns. */
- /* In case SQRE =1, the last row of VT spans the right null */
- /* space. */
- /* LDVT (input) INTEGER */
- /* The leading dimension of the array VT. LDVT >= M. */
- /* DSIGMA (output) DOUBLE PRECISION array, dimension (N) */
- /* Contains a copy of the diagonal elements (K-1 singular values */
- /* and one zero) in the secular equation. */
- /* U2 (output) DOUBLE PRECISION array, dimension(LDU2,N) */
- /* Contains a copy of the first K-1 left singular vectors which */
- /* will be used by DLASD3 in a matrix multiply (DGEMM) to solve */
- /* for the new left singular vectors. U2 is arranged into four */
- /* blocks. The first block contains a column with 1 at NL+1 and */
- /* zero everywhere else; the second block contains non-zero */
- /* entries only at and above NL; the third contains non-zero */
- /* entries only below NL+1; and the fourth is dense. */
- /* LDU2 (input) INTEGER */
- /* The leading dimension of the array U2. LDU2 >= N. */
- /* VT2 (output) DOUBLE PRECISION array, dimension(LDVT2,N) */
- /* VT2' contains a copy of the first K right singular vectors */
- /* which will be used by DLASD3 in a matrix multiply (DGEMM) to */
- /* solve for the new right singular vectors. VT2 is arranged into */
- /* three blocks. The first block contains a row that corresponds */
- /* to the special 0 diagonal element in SIGMA; the second block */
- /* contains non-zeros only at and before NL +1; the third block */
- /* contains non-zeros only at and after NL +2. */
- /* LDVT2 (input) INTEGER */
- /* The leading dimension of the array VT2. LDVT2 >= M. */
- /* IDXP (workspace) INTEGER array dimension(N) */
- /* This will contain the permutation used to place deflated */
- /* values of D at the end of the array. On output IDXP(2:K) */
- /* points to the nondeflated D-values and IDXP(K+1:N) */
- /* points to the deflated singular values. */
- /* IDX (workspace) INTEGER array dimension(N) */
- /* This will contain the permutation used to sort the contents of */
- /* D into ascending order. */
- /* IDXC (output) INTEGER array dimension(N) */
- /* This will contain the permutation used to arrange the columns */
- /* of the deflated U matrix into three groups: the first group */
- /* contains non-zero entries only at and above NL, the second */
- /* contains non-zero entries only below NL+2, and the third is */
- /* dense. */
- /* IDXQ (input/output) INTEGER array dimension(N) */
- /* This contains the permutation which separately sorts the two */
- /* sub-problems in D into ascending order. Note that entries in */
- /* the first hlaf of this permutation must first be moved one */
- /* position backward; and entries in the second half */
- /* must first have NL+1 added to their values. */
- /* COLTYP (workspace/output) INTEGER array dimension(N) */
- /* As workspace, this will contain a label which will indicate */
- /* which of the following types a column in the U2 matrix or a */
- /* row in the VT2 matrix is: */
- /* 1 : non-zero in the upper half only */
- /* 2 : non-zero in the lower half only */
- /* 3 : dense */
- /* 4 : deflated */
- /* On exit, it is an array of dimension 4, with COLTYP(I) being */
- /* the dimension of the I-th type columns. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --z__;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- --dsigma;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1;
- u2 -= u2_offset;
- vt2_dim1 = *ldvt2;
- vt2_offset = 1 + vt2_dim1;
- vt2 -= vt2_offset;
- --idxp;
- --idx;
- --idxc;
- --idxq;
- --coltyp;
- /* Function Body */
- *info = 0;
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if (*sqre != 1 && *sqre != 0) {
- *info = -3;
- }
- n = *nl + *nr + 1;
- m = n + *sqre;
- if (*ldu < n) {
- *info = -10;
- } else if (*ldvt < m) {
- *info = -12;
- } else if (*ldu2 < n) {
- *info = -15;
- } else if (*ldvt2 < m) {
- *info = -17;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASD2", &i__1);
- return 0;
- }
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
- /* Generate the first part of the vector Z; and move the singular */
- /* values in the first part of D one position backward. */
- z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
- z__[1] = z1;
- for (i__ = *nl; i__ >= 1; --i__) {
- z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
- d__[i__ + 1] = d__[i__];
- idxq[i__ + 1] = idxq[i__] + 1;
- /* L10: */
- }
- /* Generate the second part of the vector Z. */
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
- /* L20: */
- }
- /* Initialize some reference arrays. */
- i__1 = nlp1;
- for (i__ = 2; i__ <= i__1; ++i__) {
- coltyp[i__] = 1;
- /* L30: */
- }
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- coltyp[i__] = 2;
- /* L40: */
- }
- /* Sort the singular values into increasing order */
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- idxq[i__] += nlp1;
- /* L50: */
- }
- /* DSIGMA, IDXC, IDXC, and the first column of U2 */
- /* are used as storage space. */
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dsigma[i__] = d__[idxq[i__]];
- u2[i__ + u2_dim1] = z__[idxq[i__]];
- idxc[i__] = coltyp[idxq[i__]];
- /* L60: */
- }
- _starpu_dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- idxi = idx[i__] + 1;
- d__[i__] = dsigma[idxi];
- z__[i__] = u2[idxi + u2_dim1];
- coltyp[i__] = idxc[idxi];
- /* L70: */
- }
- /* Calculate the allowable deflation tolerance */
- eps = _starpu_dlamch_("Epsilon");
- /* Computing MAX */
- d__1 = abs(*alpha), d__2 = abs(*beta);
- tol = max(d__1,d__2);
- /* Computing MAX */
- d__2 = (d__1 = d__[n], abs(d__1));
- tol = eps * 8. * max(d__2,tol);
- /* There are 2 kinds of deflation -- first a value in the z-vector */
- /* is small, second two (or more) singular values are very close */
- /* together (their difference is small). */
- /* If the value in the z-vector is small, we simply permute the */
- /* array so that the corresponding singular value is moved to the */
- /* end. */
- /* If two values in the D-vector are close, we perform a two-sided */
- /* rotation designed to make one of the corresponding z-vector */
- /* entries zero, and then permute the array so that the deflated */
- /* singular value is moved to the end. */
- /* If there are multiple singular values then the problem deflates. */
- /* Here the number of equal singular values are found. As each equal */
- /* singular value is found, an elementary reflector is computed to */
- /* rotate the corresponding singular subspace so that the */
- /* corresponding components of Z are zero in this new basis. */
- *k = 1;
- k2 = n + 1;
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- idxp[k2] = j;
- coltyp[j] = 4;
- if (j == n) {
- goto L120;
- }
- } else {
- jprev = j;
- goto L90;
- }
- /* L80: */
- }
- L90:
- j = jprev;
- L100:
- ++j;
- if (j > n) {
- goto L110;
- }
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- idxp[k2] = j;
- coltyp[j] = 4;
- } else {
- /* Check if singular values are close enough to allow deflation. */
- if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
- /* Deflation is possible. */
- s = z__[jprev];
- c__ = z__[j];
- /* Find sqrt(a**2+b**2) without overflow or */
- /* destructive underflow. */
- tau = _starpu_dlapy2_(&c__, &s);
- c__ /= tau;
- s = -s / tau;
- z__[j] = tau;
- z__[jprev] = 0.;
- /* Apply back the Givens rotation to the left and right */
- /* singular vector matrices. */
- idxjp = idxq[idx[jprev] + 1];
- idxj = idxq[idx[j] + 1];
- if (idxjp <= nlp1) {
- --idxjp;
- }
- if (idxj <= nlp1) {
- --idxj;
- }
- _starpu_drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
- c__1, &c__, &s);
- _starpu_drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
- c__, &s);
- if (coltyp[j] != coltyp[jprev]) {
- coltyp[j] = 3;
- }
- coltyp[jprev] = 4;
- --k2;
- idxp[k2] = jprev;
- jprev = j;
- } else {
- ++(*k);
- u2[*k + u2_dim1] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- jprev = j;
- }
- }
- goto L100;
- L110:
- /* Record the last singular value. */
- ++(*k);
- u2[*k + u2_dim1] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- L120:
- /* Count up the total number of the various types of columns, then */
- /* form a permutation which positions the four column types into */
- /* four groups of uniform structure (although one or more of these */
- /* groups may be empty). */
- for (j = 1; j <= 4; ++j) {
- ctot[j - 1] = 0;
- /* L130: */
- }
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- ct = coltyp[j];
- ++ctot[ct - 1];
- /* L140: */
- }
- /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
- psm[0] = 2;
- psm[1] = ctot[0] + 2;
- psm[2] = psm[1] + ctot[1];
- psm[3] = psm[2] + ctot[2];
- /* Fill out the IDXC array so that the permutation which it induces */
- /* will place all type-1 columns first, all type-2 columns next, */
- /* then all type-3's, and finally all type-4's, starting from the */
- /* second column. This applies similarly to the rows of VT. */
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- ct = coltyp[jp];
- idxc[psm[ct - 1]] = j;
- ++psm[ct - 1];
- /* L150: */
- }
- /* Sort the singular values and corresponding singular vectors into */
- /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
- /* which were not deflated go into the first K slots of DSIGMA, U2, */
- /* and VT2 respectively, while those which were deflated go into the */
- /* last N - K slots, except that the first column/row will be treated */
- /* separately. */
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- dsigma[j] = d__[jp];
- idxj = idxq[idx[idxp[idxc[j]]] + 1];
- if (idxj <= nlp1) {
- --idxj;
- }
- _starpu_dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
- _starpu_dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
- /* L160: */
- }
- /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
- dsigma[1] = 0.;
- hlftol = tol / 2.;
- if (abs(dsigma[2]) <= hlftol) {
- dsigma[2] = hlftol;
- }
- if (m > n) {
- z__[1] = _starpu_dlapy2_(&z1, &z__[m]);
- if (z__[1] <= tol) {
- c__ = 1.;
- s = 0.;
- z__[1] = tol;
- } else {
- c__ = z1 / z__[1];
- s = z__[m] / z__[1];
- }
- } else {
- if (abs(z1) <= tol) {
- z__[1] = tol;
- } else {
- z__[1] = z1;
- }
- }
- /* Move the rest of the updating row to Z. */
- i__1 = *k - 1;
- _starpu_dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
- /* Determine the first column of U2, the first row of VT2 and the */
- /* last row of VT. */
- _starpu_dlaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
- u2[nlp1 + u2_dim1] = 1.;
- if (m > n) {
- i__1 = nlp1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
- vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
- /* L170: */
- }
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
- vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
- /* L180: */
- }
- } else {
- _starpu_dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
- }
- if (m > n) {
- _starpu_dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
- }
- /* The deflated singular values and their corresponding vectors go */
- /* into the back of D, U, and V respectively. */
- if (n > *k) {
- i__1 = n - *k;
- _starpu_dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
- i__1 = n - *k;
- _starpu_dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
- * u_dim1 + 1], ldu);
- i__1 = n - *k;
- _starpu_dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
- vt_dim1], ldvt);
- }
- /* Copy CTOT into COLTYP for referencing in DLASD3. */
- for (j = 1; j <= 4; ++j) {
- coltyp[j] = ctot[j - 1];
- /* L190: */
- }
- return 0;
- /* End of DLASD2 */
- } /* _starpu_dlasd2_ */
|