123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- /* dlasd1.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__0 = 0;
- static doublereal c_b7 = 1.;
- static integer c__1 = 1;
- static integer c_n1 = -1;
- /* Subroutine */ int _starpu_dlasd1_(integer *nl, integer *nr, integer *sqre,
- doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u,
- integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
- iwork, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
- doublereal d__1, d__2;
- /* Local variables */
- integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2, idxc,
- idxp, ldvt2;
- extern /* Subroutine */ int _starpu_dlasd2_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *), _starpu_dlasd3_(
- integer *, integer *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, doublereal *, integer *),
- _starpu_dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, integer *),
- _starpu_dlamrg_(integer *, integer *, doublereal *, integer *, integer *,
- integer *);
- integer isigma;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal orgnrm;
- integer coltyp;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, */
- /* where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. */
- /* A related subroutine DLASD7 handles the case in which the singular */
- /* values (and the singular vectors in factored form) are desired. */
- /* DLASD1 computes the SVD as follows: */
- /* ( D1(in) 0 0 0 ) */
- /* B = U(in) * ( Z1' a Z2' b ) * VT(in) */
- /* ( 0 0 D2(in) 0 ) */
- /* = U(out) * ( D(out) 0) * VT(out) */
- /* where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M */
- /* with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
- /* elsewhere; and the entry b is empty if SQRE = 0. */
- /* The left singular vectors of the original matrix are stored in U, and */
- /* the transpose of the right singular vectors are stored in VT, and the */
- /* singular values are in D. The algorithm consists of three stages: */
- /* The first stage consists of deflating the size of the problem */
- /* when there are multiple singular values or when there are zeros in */
- /* the Z vector. For each such occurence the dimension of the */
- /* secular equation problem is reduced by one. This stage is */
- /* performed by the routine DLASD2. */
- /* The second stage consists of calculating the updated */
- /* singular values. This is done by finding the square roots of the */
- /* roots of the secular equation via the routine DLASD4 (as called */
- /* by DLASD3). This routine also calculates the singular vectors of */
- /* the current problem. */
- /* The final stage consists of computing the updated singular vectors */
- /* directly using the updated singular values. The singular vectors */
- /* for the current problem are multiplied with the singular vectors */
- /* from the overall problem. */
- /* Arguments */
- /* ========= */
- /* NL (input) INTEGER */
- /* The row dimension of the upper block. NL >= 1. */
- /* NR (input) INTEGER */
- /* The row dimension of the lower block. NR >= 1. */
- /* SQRE (input) INTEGER */
- /* = 0: the lower block is an NR-by-NR square matrix. */
- /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* The bidiagonal matrix has row dimension N = NL + NR + 1, */
- /* and column dimension M = N + SQRE. */
- /* D (input/output) DOUBLE PRECISION array, */
- /* dimension (N = NL+NR+1). */
- /* On entry D(1:NL,1:NL) contains the singular values of the */
- /* upper block; and D(NL+2:N) contains the singular values of */
- /* the lower block. On exit D(1:N) contains the singular values */
- /* of the modified matrix. */
- /* ALPHA (input/output) DOUBLE PRECISION */
- /* Contains the diagonal element associated with the added row. */
- /* BETA (input/output) DOUBLE PRECISION */
- /* Contains the off-diagonal element associated with the added */
- /* row. */
- /* U (input/output) DOUBLE PRECISION array, dimension(LDU,N) */
- /* On entry U(1:NL, 1:NL) contains the left singular vectors of */
- /* the upper block; U(NL+2:N, NL+2:N) contains the left singular */
- /* vectors of the lower block. On exit U contains the left */
- /* singular vectors of the bidiagonal matrix. */
- /* LDU (input) INTEGER */
- /* The leading dimension of the array U. LDU >= max( 1, N ). */
- /* VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */
- /* where M = N + SQRE. */
- /* On entry VT(1:NL+1, 1:NL+1)' contains the right singular */
- /* vectors of the upper block; VT(NL+2:M, NL+2:M)' contains */
- /* the right singular vectors of the lower block. On exit */
- /* VT' contains the right singular vectors of the */
- /* bidiagonal matrix. */
- /* LDVT (input) INTEGER */
- /* The leading dimension of the array VT. LDVT >= max( 1, M ). */
- /* IDXQ (output) INTEGER array, dimension(N) */
- /* This contains the permutation which will reintegrate the */
- /* subproblem just solved back into sorted order, i.e. */
- /* D( IDXQ( I = 1, N ) ) will be in ascending order. */
- /* IWORK (workspace) INTEGER array, dimension( 4 * N ) */
- /* WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an singular value did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- --idxq;
- --iwork;
- --work;
- /* Function Body */
- *info = 0;
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -3;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLASD1", &i__1);
- return 0;
- }
- n = *nl + *nr + 1;
- m = n + *sqre;
- /* The following values are for bookkeeping purposes only. They are */
- /* integer pointers which indicate the portion of the workspace */
- /* used by a particular array in DLASD2 and DLASD3. */
- ldu2 = n;
- ldvt2 = m;
- iz = 1;
- isigma = iz + m;
- iu2 = isigma + n;
- ivt2 = iu2 + ldu2 * n;
- iq = ivt2 + ldvt2 * m;
- idx = 1;
- idxc = idx + n;
- coltyp = idxc + n;
- idxp = coltyp + n;
- /* Scale. */
- /* Computing MAX */
- d__1 = abs(*alpha), d__2 = abs(*beta);
- orgnrm = max(d__1,d__2);
- d__[*nl + 1] = 0.;
- i__1 = n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
- orgnrm = (d__1 = d__[i__], abs(d__1));
- }
- /* L10: */
- }
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
- *alpha /= orgnrm;
- *beta /= orgnrm;
- /* Deflate singular values. */
- _starpu_dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset],
- ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
- work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
- idxq[1], &iwork[coltyp], info);
- /* Solve Secular Equation and update singular vectors. */
- ldq = k;
- _starpu_dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
- u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
- ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
- if (*info != 0) {
- return 0;
- }
- /* Unscale. */
- _starpu_dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
- /* Prepare the IDXQ sorting permutation. */
- n1 = k;
- n2 = n - k;
- _starpu_dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
- return 0;
- /* End of DLASD1 */
- } /* _starpu_dlasd1_ */
|