123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862 |
- /* dlarre.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dlarre_(char *range, integer *n, doublereal *vl,
- doublereal *vu, integer *il, integer *iu, doublereal *d__, doublereal
- *e, doublereal *e2, doublereal *rtol1, doublereal *rtol2, doublereal *
- spltol, integer *nsplit, integer *isplit, integer *m, doublereal *w,
- doublereal *werr, doublereal *wgap, integer *iblock, integer *indexw,
- doublereal *gers, doublereal *pivmin, doublereal *work, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2;
- doublereal d__1, d__2, d__3;
- /* Builtin functions */
- double sqrt(doublereal), log(doublereal);
- /* Local variables */
- integer i__, j;
- doublereal s1, s2;
- integer mb;
- doublereal gl;
- integer in, mm;
- doublereal gu;
- integer cnt;
- doublereal eps, tau, tmp, rtl;
- integer cnt1, cnt2;
- doublereal tmp1, eabs;
- integer iend, jblk;
- doublereal eold;
- integer indl;
- doublereal dmax__, emax;
- integer wend, idum, indu;
- doublereal rtol;
- integer iseed[4];
- doublereal avgap, sigma;
- extern logical _starpu_lsame_(char *, char *);
- integer iinfo;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- logical norep;
- extern /* Subroutine */ int _starpu_dlasq2_(integer *, doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- integer ibegin;
- logical forceb;
- integer irange;
- doublereal sgndef;
- extern /* Subroutine */ int _starpu_dlarra_(integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *), _starpu_dlarrb_(integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, integer *), _starpu_dlarrc_(char *
- , integer *, doublereal *, doublereal *, doublereal *, doublereal
- *, doublereal *, integer *, integer *, integer *, integer *);
- integer wbegin;
- extern /* Subroutine */ int _starpu_dlarrd_(char *, char *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *
- , integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- doublereal safmin, spdiam;
- extern /* Subroutine */ int _starpu_dlarrk_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *);
- logical usedqd;
- doublereal clwdth, isleft;
- extern /* Subroutine */ int _starpu_dlarnv_(integer *, integer *, integer *,
- doublereal *);
- doublereal isrght, bsrtol, dpivot;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* To find the desired eigenvalues of a given real symmetric */
- /* tridiagonal matrix T, DLARRE sets any "small" off-diagonal */
- /* elements to zero, and for each unreduced block T_i, it finds */
- /* (a) a suitable shift at one end of the block's spectrum, */
- /* (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and */
- /* (c) eigenvalues of each L_i D_i L_i^T. */
- /* The representations and eigenvalues found are then used by */
- /* DSTEMR to compute the eigenvectors of T. */
- /* The accuracy varies depending on whether bisection is used to */
- /* find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to */
- /* conpute all and then discard any unwanted one. */
- /* As an added benefit, DLARRE also outputs the n */
- /* Gerschgorin intervals for the matrices L_i D_i L_i^T. */
- /* Arguments */
- /* ========= */
- /* RANGE (input) CHARACTER */
- /* = 'A': ("All") all eigenvalues will be found. */
- /* = 'V': ("Value") all eigenvalues in the half-open interval */
- /* (VL, VU] will be found. */
- /* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
- /* entire matrix) will be found. */
- /* N (input) INTEGER */
- /* The order of the matrix. N > 0. */
- /* VL (input/output) DOUBLE PRECISION */
- /* VU (input/output) DOUBLE PRECISION */
- /* If RANGE='V', the lower and upper bounds for the eigenvalues. */
- /* Eigenvalues less than or equal to VL, or greater than VU, */
- /* will not be returned. VL < VU. */
- /* If RANGE='I' or ='A', DLARRE computes bounds on the desired */
- /* part of the spectrum. */
- /* IL (input) INTEGER */
- /* IU (input) INTEGER */
- /* If RANGE='I', the indices (in ascending order) of the */
- /* smallest and largest eigenvalues to be returned. */
- /* 1 <= IL <= IU <= N. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the N diagonal elements of the tridiagonal */
- /* matrix T. */
- /* On exit, the N diagonal elements of the diagonal */
- /* matrices D_i. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the first (N-1) entries contain the subdiagonal */
- /* elements of the tridiagonal matrix T; E(N) need not be set. */
- /* On exit, E contains the subdiagonal elements of the unit */
- /* bidiagonal matrices L_i. The entries E( ISPLIT( I ) ), */
- /* 1 <= I <= NSPLIT, contain the base points sigma_i on output. */
- /* E2 (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the first (N-1) entries contain the SQUARES of the */
- /* subdiagonal elements of the tridiagonal matrix T; */
- /* E2(N) need not be set. */
- /* On exit, the entries E2( ISPLIT( I ) ), */
- /* 1 <= I <= NSPLIT, have been set to zero */
- /* RTOL1 (input) DOUBLE PRECISION */
- /* RTOL2 (input) DOUBLE PRECISION */
- /* Parameters for bisection. */
- /* An interval [LEFT,RIGHT] has converged if */
- /* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
- /* SPLTOL (input) DOUBLE PRECISION */
- /* The threshold for splitting. */
- /* NSPLIT (output) INTEGER */
- /* The number of blocks T splits into. 1 <= NSPLIT <= N. */
- /* ISPLIT (output) INTEGER array, dimension (N) */
- /* The splitting points, at which T breaks up into blocks. */
- /* The first block consists of rows/columns 1 to ISPLIT(1), */
- /* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
- /* etc., and the NSPLIT-th consists of rows/columns */
- /* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
- /* M (output) INTEGER */
- /* The total number of eigenvalues (of all L_i D_i L_i^T) */
- /* found. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* The first M elements contain the eigenvalues. The */
- /* eigenvalues of each of the blocks, L_i D_i L_i^T, are */
- /* sorted in ascending order ( DLARRE may use the */
- /* remaining N-M elements as workspace). */
- /* WERR (output) DOUBLE PRECISION array, dimension (N) */
- /* The error bound on the corresponding eigenvalue in W. */
- /* WGAP (output) DOUBLE PRECISION array, dimension (N) */
- /* The separation from the right neighbor eigenvalue in W. */
- /* The gap is only with respect to the eigenvalues of the same block */
- /* as each block has its own representation tree. */
- /* Exception: at the right end of a block we store the left gap */
- /* IBLOCK (output) INTEGER array, dimension (N) */
- /* The indices of the blocks (submatrices) associated with the */
- /* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
- /* W(i) belongs to the first block from the top, =2 if W(i) */
- /* belongs to the second block, etc. */
- /* INDEXW (output) INTEGER array, dimension (N) */
- /* The indices of the eigenvalues within each block (submatrix); */
- /* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
- /* i-th eigenvalue W(i) is the 10-th eigenvalue in block 2 */
- /* GERS (output) DOUBLE PRECISION array, dimension (2*N) */
- /* The N Gerschgorin intervals (the i-th Gerschgorin interval */
- /* is (GERS(2*i-1), GERS(2*i)). */
- /* PIVMIN (output) DOUBLE PRECISION */
- /* The minimum pivot in the Sturm sequence for T. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (6*N) */
- /* Workspace. */
- /* IWORK (workspace) INTEGER array, dimension (5*N) */
- /* Workspace. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* > 0: A problem occured in DLARRE. */
- /* < 0: One of the called subroutines signaled an internal problem. */
- /* Needs inspection of the corresponding parameter IINFO */
- /* for further information. */
- /* =-1: Problem in DLARRD. */
- /* = 2: No base representation could be found in MAXTRY iterations. */
- /* Increasing MAXTRY and recompilation might be a remedy. */
- /* =-3: Problem in DLARRB when computing the refined root */
- /* representation for DLASQ2. */
- /* =-4: Problem in DLARRB when preforming bisection on the */
- /* desired part of the spectrum. */
- /* =-5: Problem in DLASQ2. */
- /* =-6: Problem in DLASQ2. */
- /* Further Details */
- /* The base representations are required to suffer very little */
- /* element growth and consequently define all their eigenvalues to */
- /* high relative accuracy. */
- /* =============== */
- /* Based on contributions by */
- /* Beresford Parlett, University of California, Berkeley, USA */
- /* Jim Demmel, University of California, Berkeley, USA */
- /* Inderjit Dhillon, University of Texas, Austin, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* Christof Voemel, University of California, Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --iwork;
- --work;
- --gers;
- --indexw;
- --iblock;
- --wgap;
- --werr;
- --w;
- --isplit;
- --e2;
- --e;
- --d__;
- /* Function Body */
- *info = 0;
- /* Decode RANGE */
- if (_starpu_lsame_(range, "A")) {
- irange = 1;
- } else if (_starpu_lsame_(range, "V")) {
- irange = 3;
- } else if (_starpu_lsame_(range, "I")) {
- irange = 2;
- }
- *m = 0;
- /* Get machine constants */
- safmin = _starpu_dlamch_("S");
- eps = _starpu_dlamch_("P");
- /* Set parameters */
- rtl = sqrt(eps);
- bsrtol = sqrt(eps);
- /* Treat case of 1x1 matrix for quick return */
- if (*n == 1) {
- if (irange == 1 || irange == 3 && d__[1] > *vl && d__[1] <= *vu ||
- irange == 2 && *il == 1 && *iu == 1) {
- *m = 1;
- w[1] = d__[1];
- /* The computation error of the eigenvalue is zero */
- werr[1] = 0.;
- wgap[1] = 0.;
- iblock[1] = 1;
- indexw[1] = 1;
- gers[1] = d__[1];
- gers[2] = d__[1];
- }
- /* store the shift for the initial RRR, which is zero in this case */
- e[1] = 0.;
- return 0;
- }
- /* General case: tridiagonal matrix of order > 1 */
- /* Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. */
- /* Compute maximum off-diagonal entry and pivmin. */
- gl = d__[1];
- gu = d__[1];
- eold = 0.;
- emax = 0.;
- e[*n] = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- werr[i__] = 0.;
- wgap[i__] = 0.;
- eabs = (d__1 = e[i__], abs(d__1));
- if (eabs >= emax) {
- emax = eabs;
- }
- tmp1 = eabs + eold;
- gers[(i__ << 1) - 1] = d__[i__] - tmp1;
- /* Computing MIN */
- d__1 = gl, d__2 = gers[(i__ << 1) - 1];
- gl = min(d__1,d__2);
- gers[i__ * 2] = d__[i__] + tmp1;
- /* Computing MAX */
- d__1 = gu, d__2 = gers[i__ * 2];
- gu = max(d__1,d__2);
- eold = eabs;
- /* L5: */
- }
- /* The minimum pivot allowed in the Sturm sequence for T */
- /* Computing MAX */
- /* Computing 2nd power */
- d__3 = emax;
- d__1 = 1., d__2 = d__3 * d__3;
- *pivmin = safmin * max(d__1,d__2);
- /* Compute spectral diameter. The Gerschgorin bounds give an */
- /* estimate that is wrong by at most a factor of SQRT(2) */
- spdiam = gu - gl;
- /* Compute splitting points */
- _starpu_dlarra_(n, &d__[1], &e[1], &e2[1], spltol, &spdiam, nsplit, &isplit[1], &
- iinfo);
- /* Can force use of bisection instead of faster DQDS. */
- /* Option left in the code for future multisection work. */
- forceb = FALSE_;
- /* Initialize USEDQD, DQDS should be used for ALLRNG unless someone */
- /* explicitly wants bisection. */
- usedqd = irange == 1 && ! forceb;
- if (irange == 1 && ! forceb) {
- /* Set interval [VL,VU] that contains all eigenvalues */
- *vl = gl;
- *vu = gu;
- } else {
- /* We call DLARRD to find crude approximations to the eigenvalues */
- /* in the desired range. In case IRANGE = INDRNG, we also obtain the */
- /* interval (VL,VU] that contains all the wanted eigenvalues. */
- /* An interval [LEFT,RIGHT] has converged if */
- /* RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) */
- /* DLARRD needs a WORK of size 4*N, IWORK of size 3*N */
- _starpu_dlarrd_(range, "B", n, vl, vu, il, iu, &gers[1], &bsrtol, &d__[1], &e[
- 1], &e2[1], pivmin, nsplit, &isplit[1], &mm, &w[1], &werr[1],
- vl, vu, &iblock[1], &indexw[1], &work[1], &iwork[1], &iinfo);
- if (iinfo != 0) {
- *info = -1;
- return 0;
- }
- /* Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 */
- i__1 = *n;
- for (i__ = mm + 1; i__ <= i__1; ++i__) {
- w[i__] = 0.;
- werr[i__] = 0.;
- iblock[i__] = 0;
- indexw[i__] = 0;
- /* L14: */
- }
- }
- /* ** */
- /* Loop over unreduced blocks */
- ibegin = 1;
- wbegin = 1;
- i__1 = *nsplit;
- for (jblk = 1; jblk <= i__1; ++jblk) {
- iend = isplit[jblk];
- in = iend - ibegin + 1;
- /* 1 X 1 block */
- if (in == 1) {
- if (irange == 1 || irange == 3 && d__[ibegin] > *vl && d__[ibegin]
- <= *vu || irange == 2 && iblock[wbegin] == jblk) {
- ++(*m);
- w[*m] = d__[ibegin];
- werr[*m] = 0.;
- /* The gap for a single block doesn't matter for the later */
- /* algorithm and is assigned an arbitrary large value */
- wgap[*m] = 0.;
- iblock[*m] = jblk;
- indexw[*m] = 1;
- ++wbegin;
- }
- /* E( IEND ) holds the shift for the initial RRR */
- e[iend] = 0.;
- ibegin = iend + 1;
- goto L170;
- }
- /* Blocks of size larger than 1x1 */
- /* E( IEND ) will hold the shift for the initial RRR, for now set it =0 */
- e[iend] = 0.;
- /* Find local outer bounds GL,GU for the block */
- gl = d__[ibegin];
- gu = d__[ibegin];
- i__2 = iend;
- for (i__ = ibegin; i__ <= i__2; ++i__) {
- /* Computing MIN */
- d__1 = gers[(i__ << 1) - 1];
- gl = min(d__1,gl);
- /* Computing MAX */
- d__1 = gers[i__ * 2];
- gu = max(d__1,gu);
- /* L15: */
- }
- spdiam = gu - gl;
- if (! (irange == 1 && ! forceb)) {
- /* Count the number of eigenvalues in the current block. */
- mb = 0;
- i__2 = mm;
- for (i__ = wbegin; i__ <= i__2; ++i__) {
- if (iblock[i__] == jblk) {
- ++mb;
- } else {
- goto L21;
- }
- /* L20: */
- }
- L21:
- if (mb == 0) {
- /* No eigenvalue in the current block lies in the desired range */
- /* E( IEND ) holds the shift for the initial RRR */
- e[iend] = 0.;
- ibegin = iend + 1;
- goto L170;
- } else {
- /* Decide whether dqds or bisection is more efficient */
- usedqd = (doublereal) mb > in * .5 && ! forceb;
- wend = wbegin + mb - 1;
- /* Calculate gaps for the current block */
- /* In later stages, when representations for individual */
- /* eigenvalues are different, we use SIGMA = E( IEND ). */
- sigma = 0.;
- i__2 = wend - 1;
- for (i__ = wbegin; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] +
- werr[i__]);
- wgap[i__] = max(d__1,d__2);
- /* L30: */
- }
- /* Computing MAX */
- d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);
- wgap[wend] = max(d__1,d__2);
- /* Find local index of the first and last desired evalue. */
- indl = indexw[wbegin];
- indu = indexw[wend];
- }
- }
- if (irange == 1 && ! forceb || usedqd) {
- /* Case of DQDS */
- /* Find approximations to the extremal eigenvalues of the block */
- _starpu_dlarrk_(&in, &c__1, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
- rtl, &tmp, &tmp1, &iinfo);
- if (iinfo != 0) {
- *info = -1;
- return 0;
- }
- /* Computing MAX */
- d__2 = gl, d__3 = tmp - tmp1 - eps * 100. * (d__1 = tmp - tmp1,
- abs(d__1));
- isleft = max(d__2,d__3);
- _starpu_dlarrk_(&in, &in, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
- rtl, &tmp, &tmp1, &iinfo);
- if (iinfo != 0) {
- *info = -1;
- return 0;
- }
- /* Computing MIN */
- d__2 = gu, d__3 = tmp + tmp1 + eps * 100. * (d__1 = tmp + tmp1,
- abs(d__1));
- isrght = min(d__2,d__3);
- /* Improve the estimate of the spectral diameter */
- spdiam = isrght - isleft;
- } else {
- /* Case of bisection */
- /* Find approximations to the wanted extremal eigenvalues */
- /* Computing MAX */
- d__2 = gl, d__3 = w[wbegin] - werr[wbegin] - eps * 100. * (d__1 =
- w[wbegin] - werr[wbegin], abs(d__1));
- isleft = max(d__2,d__3);
- /* Computing MIN */
- d__2 = gu, d__3 = w[wend] + werr[wend] + eps * 100. * (d__1 = w[
- wend] + werr[wend], abs(d__1));
- isrght = min(d__2,d__3);
- }
- /* Decide whether the base representation for the current block */
- /* L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I */
- /* should be on the left or the right end of the current block. */
- /* The strategy is to shift to the end which is "more populated" */
- /* Furthermore, decide whether to use DQDS for the computation of */
- /* the eigenvalue approximations at the end of DLARRE or bisection. */
- /* dqds is chosen if all eigenvalues are desired or the number of */
- /* eigenvalues to be computed is large compared to the blocksize. */
- if (irange == 1 && ! forceb) {
- /* If all the eigenvalues have to be computed, we use dqd */
- usedqd = TRUE_;
- /* INDL is the local index of the first eigenvalue to compute */
- indl = 1;
- indu = in;
- /* MB = number of eigenvalues to compute */
- mb = in;
- wend = wbegin + mb - 1;
- /* Define 1/4 and 3/4 points of the spectrum */
- s1 = isleft + spdiam * .25;
- s2 = isrght - spdiam * .25;
- } else {
- /* DLARRD has computed IBLOCK and INDEXW for each eigenvalue */
- /* approximation. */
- /* choose sigma */
- if (usedqd) {
- s1 = isleft + spdiam * .25;
- s2 = isrght - spdiam * .25;
- } else {
- tmp = min(isrght,*vu) - max(isleft,*vl);
- s1 = max(isleft,*vl) + tmp * .25;
- s2 = min(isrght,*vu) - tmp * .25;
- }
- }
- /* Compute the negcount at the 1/4 and 3/4 points */
- if (mb > 1) {
- _starpu_dlarrc_("T", &in, &s1, &s2, &d__[ibegin], &e[ibegin], pivmin, &
- cnt, &cnt1, &cnt2, &iinfo);
- }
- if (mb == 1) {
- sigma = gl;
- sgndef = 1.;
- } else if (cnt1 - indl >= indu - cnt2) {
- if (irange == 1 && ! forceb) {
- sigma = max(isleft,gl);
- } else if (usedqd) {
- /* use Gerschgorin bound as shift to get pos def matrix */
- /* for dqds */
- sigma = isleft;
- } else {
- /* use approximation of the first desired eigenvalue of the */
- /* block as shift */
- sigma = max(isleft,*vl);
- }
- sgndef = 1.;
- } else {
- if (irange == 1 && ! forceb) {
- sigma = min(isrght,gu);
- } else if (usedqd) {
- /* use Gerschgorin bound as shift to get neg def matrix */
- /* for dqds */
- sigma = isrght;
- } else {
- /* use approximation of the first desired eigenvalue of the */
- /* block as shift */
- sigma = min(isrght,*vu);
- }
- sgndef = -1.;
- }
- /* An initial SIGMA has been chosen that will be used for computing */
- /* T - SIGMA I = L D L^T */
- /* Define the increment TAU of the shift in case the initial shift */
- /* needs to be refined to obtain a factorization with not too much */
- /* element growth. */
- if (usedqd) {
- /* The initial SIGMA was to the outer end of the spectrum */
- /* the matrix is definite and we need not retreat. */
- tau = spdiam * eps * *n + *pivmin * 2.;
- } else {
- if (mb > 1) {
- clwdth = w[wend] + werr[wend] - w[wbegin] - werr[wbegin];
- avgap = (d__1 = clwdth / (doublereal) (wend - wbegin), abs(
- d__1));
- if (sgndef == 1.) {
- /* Computing MAX */
- d__1 = wgap[wbegin];
- tau = max(d__1,avgap) * .5;
- /* Computing MAX */
- d__1 = tau, d__2 = werr[wbegin];
- tau = max(d__1,d__2);
- } else {
- /* Computing MAX */
- d__1 = wgap[wend - 1];
- tau = max(d__1,avgap) * .5;
- /* Computing MAX */
- d__1 = tau, d__2 = werr[wend];
- tau = max(d__1,d__2);
- }
- } else {
- tau = werr[wbegin];
- }
- }
- for (idum = 1; idum <= 6; ++idum) {
- /* Compute L D L^T factorization of tridiagonal matrix T - sigma I. */
- /* Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of */
- /* pivots in WORK(2*IN+1:3*IN) */
- dpivot = d__[ibegin] - sigma;
- work[1] = dpivot;
- dmax__ = abs(work[1]);
- j = ibegin;
- i__2 = in - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[(in << 1) + i__] = 1. / work[i__];
- tmp = e[j] * work[(in << 1) + i__];
- work[in + i__] = tmp;
- dpivot = d__[j + 1] - sigma - tmp * e[j];
- work[i__ + 1] = dpivot;
- /* Computing MAX */
- d__1 = dmax__, d__2 = abs(dpivot);
- dmax__ = max(d__1,d__2);
- ++j;
- /* L70: */
- }
- /* check for element growth */
- if (dmax__ > spdiam * 64.) {
- norep = TRUE_;
- } else {
- norep = FALSE_;
- }
- if (usedqd && ! norep) {
- /* Ensure the definiteness of the representation */
- /* All entries of D (of L D L^T) must have the same sign */
- i__2 = in;
- for (i__ = 1; i__ <= i__2; ++i__) {
- tmp = sgndef * work[i__];
- if (tmp < 0.) {
- norep = TRUE_;
- }
- /* L71: */
- }
- }
- if (norep) {
- /* Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin */
- /* shift which makes the matrix definite. So we should end up */
- /* here really only in the case of IRANGE = VALRNG or INDRNG. */
- if (idum == 5) {
- if (sgndef == 1.) {
- /* The fudged Gerschgorin shift should succeed */
- sigma = gl - spdiam * 2. * eps * *n - *pivmin * 4.;
- } else {
- sigma = gu + spdiam * 2. * eps * *n + *pivmin * 4.;
- }
- } else {
- sigma -= sgndef * tau;
- tau *= 2.;
- }
- } else {
- /* an initial RRR is found */
- goto L83;
- }
- /* L80: */
- }
- /* if the program reaches this point, no base representation could be */
- /* found in MAXTRY iterations. */
- *info = 2;
- return 0;
- L83:
- /* At this point, we have found an initial base representation */
- /* T - SIGMA I = L D L^T with not too much element growth. */
- /* Store the shift. */
- e[iend] = sigma;
- /* Store D and L. */
- _starpu_dcopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1);
- i__2 = in - 1;
- _starpu_dcopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1);
- if (mb > 1) {
- /* Perturb each entry of the base representation by a small */
- /* (but random) relative amount to overcome difficulties with */
- /* glued matrices. */
- for (i__ = 1; i__ <= 4; ++i__) {
- iseed[i__ - 1] = 1;
- /* L122: */
- }
- i__2 = (in << 1) - 1;
- _starpu_dlarnv_(&c__2, iseed, &i__2, &work[1]);
- i__2 = in - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- d__[ibegin + i__ - 1] *= eps * 8. * work[i__] + 1.;
- e[ibegin + i__ - 1] *= eps * 8. * work[in + i__] + 1.;
- /* L125: */
- }
- d__[iend] *= eps * 4. * work[in] + 1.;
- }
- /* Don't update the Gerschgorin intervals because keeping track */
- /* of the updates would be too much work in DLARRV. */
- /* We update W instead and use it to locate the proper Gerschgorin */
- /* intervals. */
- /* Compute the required eigenvalues of L D L' by bisection or dqds */
- if (! usedqd) {
- /* If DLARRD has been used, shift the eigenvalue approximations */
- /* according to their representation. This is necessary for */
- /* a uniform DLARRV since dqds computes eigenvalues of the */
- /* shifted representation. In DLARRV, W will always hold the */
- /* UNshifted eigenvalue approximation. */
- i__2 = wend;
- for (j = wbegin; j <= i__2; ++j) {
- w[j] -= sigma;
- werr[j] += (d__1 = w[j], abs(d__1)) * eps;
- /* L134: */
- }
- /* call DLARRB to reduce eigenvalue error of the approximations */
- /* from DLARRD */
- i__2 = iend - 1;
- for (i__ = ibegin; i__ <= i__2; ++i__) {
- /* Computing 2nd power */
- d__1 = e[i__];
- work[i__] = d__[i__] * (d__1 * d__1);
- /* L135: */
- }
- /* use bisection to find EV from INDL to INDU */
- i__2 = indl - 1;
- _starpu_dlarrb_(&in, &d__[ibegin], &work[ibegin], &indl, &indu, rtol1,
- rtol2, &i__2, &w[wbegin], &wgap[wbegin], &werr[wbegin], &
- work[(*n << 1) + 1], &iwork[1], pivmin, &spdiam, &in, &
- iinfo);
- if (iinfo != 0) {
- *info = -4;
- return 0;
- }
- /* DLARRB computes all gaps correctly except for the last one */
- /* Record distance to VU/GU */
- /* Computing MAX */
- d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);
- wgap[wend] = max(d__1,d__2);
- i__2 = indu;
- for (i__ = indl; i__ <= i__2; ++i__) {
- ++(*m);
- iblock[*m] = jblk;
- indexw[*m] = i__;
- /* L138: */
- }
- } else {
- /* Call dqds to get all eigs (and then possibly delete unwanted */
- /* eigenvalues). */
- /* Note that dqds finds the eigenvalues of the L D L^T representation */
- /* of T to high relative accuracy. High relative accuracy */
- /* might be lost when the shift of the RRR is subtracted to obtain */
- /* the eigenvalues of T. However, T is not guaranteed to define its */
- /* eigenvalues to high relative accuracy anyway. */
- /* Set RTOL to the order of the tolerance used in DLASQ2 */
- /* This is an ESTIMATED error, the worst case bound is 4*N*EPS */
- /* which is usually too large and requires unnecessary work to be */
- /* done by bisection when computing the eigenvectors */
- rtol = log((doublereal) in) * 4. * eps;
- j = ibegin;
- i__2 = in - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[(i__ << 1) - 1] = (d__1 = d__[j], abs(d__1));
- work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1];
- ++j;
- /* L140: */
- }
- work[(in << 1) - 1] = (d__1 = d__[iend], abs(d__1));
- work[in * 2] = 0.;
- _starpu_dlasq2_(&in, &work[1], &iinfo);
- if (iinfo != 0) {
- /* If IINFO = -5 then an index is part of a tight cluster */
- /* and should be changed. The index is in IWORK(1) and the */
- /* gap is in WORK(N+1) */
- *info = -5;
- return 0;
- } else {
- /* Test that all eigenvalues are positive as expected */
- i__2 = in;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (work[i__] < 0.) {
- *info = -6;
- return 0;
- }
- /* L149: */
- }
- }
- if (sgndef > 0.) {
- i__2 = indu;
- for (i__ = indl; i__ <= i__2; ++i__) {
- ++(*m);
- w[*m] = work[in - i__ + 1];
- iblock[*m] = jblk;
- indexw[*m] = i__;
- /* L150: */
- }
- } else {
- i__2 = indu;
- for (i__ = indl; i__ <= i__2; ++i__) {
- ++(*m);
- w[*m] = -work[i__];
- iblock[*m] = jblk;
- indexw[*m] = i__;
- /* L160: */
- }
- }
- i__2 = *m;
- for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
- /* the value of RTOL below should be the tolerance in DLASQ2 */
- werr[i__] = rtol * (d__1 = w[i__], abs(d__1));
- /* L165: */
- }
- i__2 = *m - 1;
- for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
- /* compute the right gap between the intervals */
- /* Computing MAX */
- d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[
- i__]);
- wgap[i__] = max(d__1,d__2);
- /* L166: */
- }
- /* Computing MAX */
- d__1 = 0., d__2 = *vu - sigma - (w[*m] + werr[*m]);
- wgap[*m] = max(d__1,d__2);
- }
- /* proceed with next block */
- ibegin = iend + 1;
- wbegin = wend + 1;
- L170:
- ;
- }
- return 0;
- /* end of DLARRE */
- } /* _starpu_dlarre_ */
|