123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026 |
- /* dlaqr5.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b7 = 0.;
- static doublereal c_b8 = 1.;
- static integer c__3 = 3;
- static integer c__1 = 1;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dlaqr5_(logical *wantt, logical *wantz, integer *kacc22,
- integer *n, integer *ktop, integer *kbot, integer *nshfts, doublereal
- *sr, doublereal *si, doublereal *h__, integer *ldh, integer *iloz,
- integer *ihiz, doublereal *z__, integer *ldz, doublereal *v, integer *
- ldv, doublereal *u, integer *ldu, integer *nv, doublereal *wv,
- integer *ldwv, integer *nh, doublereal *wh, integer *ldwh)
- {
- /* System generated locals */
- integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1,
- wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
- i__4, i__5, i__6, i__7;
- doublereal d__1, d__2, d__3, d__4, d__5;
- /* Local variables */
- integer i__, j, k, m, i2, j2, i4, j4, k1;
- doublereal h11, h12, h21, h22;
- integer m22, ns, nu;
- doublereal vt[3], scl;
- integer kdu, kms;
- doublereal ulp;
- integer knz, kzs;
- doublereal tst1, tst2, beta;
- logical blk22, bmp22;
- integer mend, jcol, jlen, jbot, mbot;
- doublereal swap;
- integer jtop, jrow, mtop;
- doublereal alpha;
- logical accum;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer ndcol, incol, krcol, nbmps;
- extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlaqr1_(
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *), _starpu_dlabad_(doublereal *,
- doublereal *);
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlarfg_(integer *, doublereal *, doublereal *,
- integer *, doublereal *), _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- doublereal safmax, refsum;
- integer mstart;
- doublereal smlnum;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* This auxiliary subroutine called by DLAQR0 performs a */
- /* single small-bulge multi-shift QR sweep. */
- /* WANTT (input) logical scalar */
- /* WANTT = .true. if the quasi-triangular Schur factor */
- /* is being computed. WANTT is set to .false. otherwise. */
- /* WANTZ (input) logical scalar */
- /* WANTZ = .true. if the orthogonal Schur factor is being */
- /* computed. WANTZ is set to .false. otherwise. */
- /* KACC22 (input) integer with value 0, 1, or 2. */
- /* Specifies the computation mode of far-from-diagonal */
- /* orthogonal updates. */
- /* = 0: DLAQR5 does not accumulate reflections and does not */
- /* use matrix-matrix multiply to update far-from-diagonal */
- /* matrix entries. */
- /* = 1: DLAQR5 accumulates reflections and uses matrix-matrix */
- /* multiply to update the far-from-diagonal matrix entries. */
- /* = 2: DLAQR5 accumulates reflections, uses matrix-matrix */
- /* multiply to update the far-from-diagonal matrix entries, */
- /* and takes advantage of 2-by-2 block structure during */
- /* matrix multiplies. */
- /* N (input) integer scalar */
- /* N is the order of the Hessenberg matrix H upon which this */
- /* subroutine operates. */
- /* KTOP (input) integer scalar */
- /* KBOT (input) integer scalar */
- /* These are the first and last rows and columns of an */
- /* isolated diagonal block upon which the QR sweep is to be */
- /* applied. It is assumed without a check that */
- /* either KTOP = 1 or H(KTOP,KTOP-1) = 0 */
- /* and */
- /* either KBOT = N or H(KBOT+1,KBOT) = 0. */
- /* NSHFTS (input) integer scalar */
- /* NSHFTS gives the number of simultaneous shifts. NSHFTS */
- /* must be positive and even. */
- /* SR (input/output) DOUBLE PRECISION array of size (NSHFTS) */
- /* SI (input/output) DOUBLE PRECISION array of size (NSHFTS) */
- /* SR contains the real parts and SI contains the imaginary */
- /* parts of the NSHFTS shifts of origin that define the */
- /* multi-shift QR sweep. On output SR and SI may be */
- /* reordered. */
- /* H (input/output) DOUBLE PRECISION array of size (LDH,N) */
- /* On input H contains a Hessenberg matrix. On output a */
- /* multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
- /* to the isolated diagonal block in rows and columns KTOP */
- /* through KBOT. */
- /* LDH (input) integer scalar */
- /* LDH is the leading dimension of H just as declared in the */
- /* calling procedure. LDH.GE.MAX(1,N). */
- /* ILOZ (input) INTEGER */
- /* IHIZ (input) INTEGER */
- /* Specify the rows of Z to which transformations must be */
- /* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N */
- /* Z (input/output) DOUBLE PRECISION array of size (LDZ,IHI) */
- /* If WANTZ = .TRUE., then the QR Sweep orthogonal */
- /* similarity transformation is accumulated into */
- /* Z(ILOZ:IHIZ,ILO:IHI) from the right. */
- /* If WANTZ = .FALSE., then Z is unreferenced. */
- /* LDZ (input) integer scalar */
- /* LDA is the leading dimension of Z just as declared in */
- /* the calling procedure. LDZ.GE.N. */
- /* V (workspace) DOUBLE PRECISION array of size (LDV,NSHFTS/2) */
- /* LDV (input) integer scalar */
- /* LDV is the leading dimension of V as declared in the */
- /* calling procedure. LDV.GE.3. */
- /* U (workspace) DOUBLE PRECISION array of size */
- /* (LDU,3*NSHFTS-3) */
- /* LDU (input) integer scalar */
- /* LDU is the leading dimension of U just as declared in the */
- /* in the calling subroutine. LDU.GE.3*NSHFTS-3. */
- /* NH (input) integer scalar */
- /* NH is the number of columns in array WH available for */
- /* workspace. NH.GE.1. */
- /* WH (workspace) DOUBLE PRECISION array of size (LDWH,NH) */
- /* LDWH (input) integer scalar */
- /* Leading dimension of WH just as declared in the */
- /* calling procedure. LDWH.GE.3*NSHFTS-3. */
- /* NV (input) integer scalar */
- /* NV is the number of rows in WV agailable for workspace. */
- /* NV.GE.1. */
- /* WV (workspace) DOUBLE PRECISION array of size */
- /* (LDWV,3*NSHFTS-3) */
- /* LDWV (input) integer scalar */
- /* LDWV is the leading dimension of WV as declared in the */
- /* in the calling subroutine. LDWV.GE.NV. */
- /* ================================================================ */
- /* Based on contributions by */
- /* Karen Braman and Ralph Byers, Department of Mathematics, */
- /* University of Kansas, USA */
- /* ================================================================ */
- /* Reference: */
- /* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* Algorithm Part I: Maintaining Well Focused Shifts, and */
- /* Level 3 Performance, SIAM Journal of Matrix Analysis, */
- /* volume 23, pages 929--947, 2002. */
- /* ================================================================ */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* ==== If there are no shifts, then there is nothing to do. ==== */
- /* Parameter adjustments */
- --sr;
- --si;
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1;
- h__ -= h_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1;
- v -= v_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- wv_dim1 = *ldwv;
- wv_offset = 1 + wv_dim1;
- wv -= wv_offset;
- wh_dim1 = *ldwh;
- wh_offset = 1 + wh_dim1;
- wh -= wh_offset;
- /* Function Body */
- if (*nshfts < 2) {
- return 0;
- }
- /* ==== If the active block is empty or 1-by-1, then there */
- /* . is nothing to do. ==== */
- if (*ktop >= *kbot) {
- return 0;
- }
- /* ==== Shuffle shifts into pairs of real shifts and pairs */
- /* . of complex conjugate shifts assuming complex */
- /* . conjugate shifts are already adjacent to one */
- /* . another. ==== */
- i__1 = *nshfts - 2;
- for (i__ = 1; i__ <= i__1; i__ += 2) {
- if (si[i__] != -si[i__ + 1]) {
- swap = sr[i__];
- sr[i__] = sr[i__ + 1];
- sr[i__ + 1] = sr[i__ + 2];
- sr[i__ + 2] = swap;
- swap = si[i__];
- si[i__] = si[i__ + 1];
- si[i__ + 1] = si[i__ + 2];
- si[i__ + 2] = swap;
- }
- /* L10: */
- }
- /* ==== NSHFTS is supposed to be even, but if it is odd, */
- /* . then simply reduce it by one. The shuffle above */
- /* . ensures that the dropped shift is real and that */
- /* . the remaining shifts are paired. ==== */
- ns = *nshfts - *nshfts % 2;
- /* ==== Machine constants for deflation ==== */
- safmin = _starpu_dlamch_("SAFE MINIMUM");
- safmax = 1. / safmin;
- _starpu_dlabad_(&safmin, &safmax);
- ulp = _starpu_dlamch_("PRECISION");
- smlnum = safmin * ((doublereal) (*n) / ulp);
- /* ==== Use accumulated reflections to update far-from-diagonal */
- /* . entries ? ==== */
- accum = *kacc22 == 1 || *kacc22 == 2;
- /* ==== If so, exploit the 2-by-2 block structure? ==== */
- blk22 = ns > 2 && *kacc22 == 2;
- /* ==== clear trash ==== */
- if (*ktop + 2 <= *kbot) {
- h__[*ktop + 2 + *ktop * h_dim1] = 0.;
- }
- /* ==== NBMPS = number of 2-shift bulges in the chain ==== */
- nbmps = ns / 2;
- /* ==== KDU = width of slab ==== */
- kdu = nbmps * 6 - 3;
- /* ==== Create and chase chains of NBMPS bulges ==== */
- i__1 = *kbot - 2;
- i__2 = nbmps * 3 - 2;
- for (incol = (1 - nbmps) * 3 + *ktop - 1; i__2 < 0 ? incol >= i__1 :
- incol <= i__1; incol += i__2) {
- ndcol = incol + kdu;
- if (accum) {
- _starpu_dlaset_("ALL", &kdu, &kdu, &c_b7, &c_b8, &u[u_offset], ldu);
- }
- /* ==== Near-the-diagonal bulge chase. The following loop */
- /* . performs the near-the-diagonal part of a small bulge */
- /* . multi-shift QR sweep. Each 6*NBMPS-2 column diagonal */
- /* . chunk extends from column INCOL to column NDCOL */
- /* . (including both column INCOL and column NDCOL). The */
- /* . following loop chases a 3*NBMPS column long chain of */
- /* . NBMPS bulges 3*NBMPS-2 columns to the right. (INCOL */
- /* . may be less than KTOP and and NDCOL may be greater than */
- /* . KBOT indicating phantom columns from which to chase */
- /* . bulges before they are actually introduced or to which */
- /* . to chase bulges beyond column KBOT.) ==== */
- /* Computing MIN */
- i__4 = incol + nbmps * 3 - 3, i__5 = *kbot - 2;
- i__3 = min(i__4,i__5);
- for (krcol = incol; krcol <= i__3; ++krcol) {
- /* ==== Bulges number MTOP to MBOT are active double implicit */
- /* . shift bulges. There may or may not also be small */
- /* . 2-by-2 bulge, if there is room. The inactive bulges */
- /* . (if any) must wait until the active bulges have moved */
- /* . down the diagonal to make room. The phantom matrix */
- /* . paradigm described above helps keep track. ==== */
- /* Computing MAX */
- i__4 = 1, i__5 = (*ktop - 1 - krcol + 2) / 3 + 1;
- mtop = max(i__4,i__5);
- /* Computing MIN */
- i__4 = nbmps, i__5 = (*kbot - krcol) / 3;
- mbot = min(i__4,i__5);
- m22 = mbot + 1;
- bmp22 = mbot < nbmps && krcol + (m22 - 1) * 3 == *kbot - 2;
- /* ==== Generate reflections to chase the chain right */
- /* . one column. (The minimum value of K is KTOP-1.) ==== */
- i__4 = mbot;
- for (m = mtop; m <= i__4; ++m) {
- k = krcol + (m - 1) * 3;
- if (k == *ktop - 1) {
- _starpu_dlaqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &sr[(m
- << 1) - 1], &si[(m << 1) - 1], &sr[m * 2], &si[m *
- 2], &v[m * v_dim1 + 1]);
- alpha = v[m * v_dim1 + 1];
- _starpu_dlarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m *
- v_dim1 + 1]);
- } else {
- beta = h__[k + 1 + k * h_dim1];
- v[m * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
- v[m * v_dim1 + 3] = h__[k + 3 + k * h_dim1];
- _starpu_dlarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m *
- v_dim1 + 1]);
- /* ==== A Bulge may collapse because of vigilant */
- /* . deflation or destructive underflow. In the */
- /* . underflow case, try the two-small-subdiagonals */
- /* . trick to try to reinflate the bulge. ==== */
- if (h__[k + 3 + k * h_dim1] != 0. || h__[k + 3 + (k + 1) *
- h_dim1] != 0. || h__[k + 3 + (k + 2) * h_dim1] ==
- 0.) {
- /* ==== Typical case: not collapsed (yet). ==== */
- h__[k + 1 + k * h_dim1] = beta;
- h__[k + 2 + k * h_dim1] = 0.;
- h__[k + 3 + k * h_dim1] = 0.;
- } else {
- /* ==== Atypical case: collapsed. Attempt to */
- /* . reintroduce ignoring H(K+1,K) and H(K+2,K). */
- /* . If the fill resulting from the new */
- /* . reflector is too large, then abandon it. */
- /* . Otherwise, use the new one. ==== */
- _starpu_dlaqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
- sr[(m << 1) - 1], &si[(m << 1) - 1], &sr[m *
- 2], &si[m * 2], vt);
- alpha = vt[0];
- _starpu_dlarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
- refsum = vt[0] * (h__[k + 1 + k * h_dim1] + vt[1] *
- h__[k + 2 + k * h_dim1]);
- if ((d__1 = h__[k + 2 + k * h_dim1] - refsum * vt[1],
- abs(d__1)) + (d__2 = refsum * vt[2], abs(d__2)
- ) > ulp * ((d__3 = h__[k + k * h_dim1], abs(
- d__3)) + (d__4 = h__[k + 1 + (k + 1) * h_dim1]
- , abs(d__4)) + (d__5 = h__[k + 2 + (k + 2) *
- h_dim1], abs(d__5)))) {
- /* ==== Starting a new bulge here would */
- /* . create non-negligible fill. Use */
- /* . the old one with trepidation. ==== */
- h__[k + 1 + k * h_dim1] = beta;
- h__[k + 2 + k * h_dim1] = 0.;
- h__[k + 3 + k * h_dim1] = 0.;
- } else {
- /* ==== Stating a new bulge here would */
- /* . create only negligible fill. */
- /* . Replace the old reflector with */
- /* . the new one. ==== */
- h__[k + 1 + k * h_dim1] -= refsum;
- h__[k + 2 + k * h_dim1] = 0.;
- h__[k + 3 + k * h_dim1] = 0.;
- v[m * v_dim1 + 1] = vt[0];
- v[m * v_dim1 + 2] = vt[1];
- v[m * v_dim1 + 3] = vt[2];
- }
- }
- }
- /* L20: */
- }
- /* ==== Generate a 2-by-2 reflection, if needed. ==== */
- k = krcol + (m22 - 1) * 3;
- if (bmp22) {
- if (k == *ktop - 1) {
- _starpu_dlaqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &sr[(
- m22 << 1) - 1], &si[(m22 << 1) - 1], &sr[m22 * 2],
- &si[m22 * 2], &v[m22 * v_dim1 + 1]);
- beta = v[m22 * v_dim1 + 1];
- _starpu_dlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
- * v_dim1 + 1]);
- } else {
- beta = h__[k + 1 + k * h_dim1];
- v[m22 * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
- _starpu_dlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
- * v_dim1 + 1]);
- h__[k + 1 + k * h_dim1] = beta;
- h__[k + 2 + k * h_dim1] = 0.;
- }
- }
- /* ==== Multiply H by reflections from the left ==== */
- if (accum) {
- jbot = min(ndcol,*kbot);
- } else if (*wantt) {
- jbot = *n;
- } else {
- jbot = *kbot;
- }
- i__4 = jbot;
- for (j = max(*ktop,krcol); j <= i__4; ++j) {
- /* Computing MIN */
- i__5 = mbot, i__6 = (j - krcol + 2) / 3;
- mend = min(i__5,i__6);
- i__5 = mend;
- for (m = mtop; m <= i__5; ++m) {
- k = krcol + (m - 1) * 3;
- refsum = v[m * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + v[
- m * v_dim1 + 2] * h__[k + 2 + j * h_dim1] + v[m *
- v_dim1 + 3] * h__[k + 3 + j * h_dim1]);
- h__[k + 1 + j * h_dim1] -= refsum;
- h__[k + 2 + j * h_dim1] -= refsum * v[m * v_dim1 + 2];
- h__[k + 3 + j * h_dim1] -= refsum * v[m * v_dim1 + 3];
- /* L30: */
- }
- /* L40: */
- }
- if (bmp22) {
- k = krcol + (m22 - 1) * 3;
- /* Computing MAX */
- i__4 = k + 1;
- i__5 = jbot;
- for (j = max(i__4,*ktop); j <= i__5; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] +
- v[m22 * v_dim1 + 2] * h__[k + 2 + j * h_dim1]);
- h__[k + 1 + j * h_dim1] -= refsum;
- h__[k + 2 + j * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
- /* L50: */
- }
- }
- /* ==== Multiply H by reflections from the right. */
- /* . Delay filling in the last row until the */
- /* . vigilant deflation check is complete. ==== */
- if (accum) {
- jtop = max(*ktop,incol);
- } else if (*wantt) {
- jtop = 1;
- } else {
- jtop = *ktop;
- }
- i__5 = mbot;
- for (m = mtop; m <= i__5; ++m) {
- if (v[m * v_dim1 + 1] != 0.) {
- k = krcol + (m - 1) * 3;
- /* Computing MIN */
- i__6 = *kbot, i__7 = k + 3;
- i__4 = min(i__6,i__7);
- for (j = jtop; j <= i__4; ++j) {
- refsum = v[m * v_dim1 + 1] * (h__[j + (k + 1) *
- h_dim1] + v[m * v_dim1 + 2] * h__[j + (k + 2)
- * h_dim1] + v[m * v_dim1 + 3] * h__[j + (k +
- 3) * h_dim1]);
- h__[j + (k + 1) * h_dim1] -= refsum;
- h__[j + (k + 2) * h_dim1] -= refsum * v[m * v_dim1 +
- 2];
- h__[j + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 +
- 3];
- /* L60: */
- }
- if (accum) {
- /* ==== Accumulate U. (If necessary, update Z later */
- /* . with with an efficient matrix-matrix */
- /* . multiply.) ==== */
- kms = k - incol;
- /* Computing MAX */
- i__4 = 1, i__6 = *ktop - incol;
- i__7 = kdu;
- for (j = max(i__4,i__6); j <= i__7; ++j) {
- refsum = v[m * v_dim1 + 1] * (u[j + (kms + 1) *
- u_dim1] + v[m * v_dim1 + 2] * u[j + (kms
- + 2) * u_dim1] + v[m * v_dim1 + 3] * u[j
- + (kms + 3) * u_dim1]);
- u[j + (kms + 1) * u_dim1] -= refsum;
- u[j + (kms + 2) * u_dim1] -= refsum * v[m *
- v_dim1 + 2];
- u[j + (kms + 3) * u_dim1] -= refsum * v[m *
- v_dim1 + 3];
- /* L70: */
- }
- } else if (*wantz) {
- /* ==== U is not accumulated, so update Z */
- /* . now by multiplying by reflections */
- /* . from the right. ==== */
- i__7 = *ihiz;
- for (j = *iloz; j <= i__7; ++j) {
- refsum = v[m * v_dim1 + 1] * (z__[j + (k + 1) *
- z_dim1] + v[m * v_dim1 + 2] * z__[j + (k
- + 2) * z_dim1] + v[m * v_dim1 + 3] * z__[
- j + (k + 3) * z_dim1]);
- z__[j + (k + 1) * z_dim1] -= refsum;
- z__[j + (k + 2) * z_dim1] -= refsum * v[m *
- v_dim1 + 2];
- z__[j + (k + 3) * z_dim1] -= refsum * v[m *
- v_dim1 + 3];
- /* L80: */
- }
- }
- }
- /* L90: */
- }
- /* ==== Special case: 2-by-2 reflection (if needed) ==== */
- k = krcol + (m22 - 1) * 3;
- if (bmp22 && v[m22 * v_dim1 + 1] != 0.) {
- /* Computing MIN */
- i__7 = *kbot, i__4 = k + 3;
- i__5 = min(i__7,i__4);
- for (j = jtop; j <= i__5; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1]
- + v[m22 * v_dim1 + 2] * h__[j + (k + 2) * h_dim1])
- ;
- h__[j + (k + 1) * h_dim1] -= refsum;
- h__[j + (k + 2) * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
- /* L100: */
- }
- if (accum) {
- kms = k - incol;
- /* Computing MAX */
- i__5 = 1, i__7 = *ktop - incol;
- i__4 = kdu;
- for (j = max(i__5,i__7); j <= i__4; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (u[j + (kms + 1) *
- u_dim1] + v[m22 * v_dim1 + 2] * u[j + (kms +
- 2) * u_dim1]);
- u[j + (kms + 1) * u_dim1] -= refsum;
- u[j + (kms + 2) * u_dim1] -= refsum * v[m22 * v_dim1
- + 2];
- /* L110: */
- }
- } else if (*wantz) {
- i__4 = *ihiz;
- for (j = *iloz; j <= i__4; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (z__[j + (k + 1) *
- z_dim1] + v[m22 * v_dim1 + 2] * z__[j + (k +
- 2) * z_dim1]);
- z__[j + (k + 1) * z_dim1] -= refsum;
- z__[j + (k + 2) * z_dim1] -= refsum * v[m22 * v_dim1
- + 2];
- /* L120: */
- }
- }
- }
- /* ==== Vigilant deflation check ==== */
- mstart = mtop;
- if (krcol + (mstart - 1) * 3 < *ktop) {
- ++mstart;
- }
- mend = mbot;
- if (bmp22) {
- ++mend;
- }
- if (krcol == *kbot - 2) {
- ++mend;
- }
- i__4 = mend;
- for (m = mstart; m <= i__4; ++m) {
- /* Computing MIN */
- i__5 = *kbot - 1, i__7 = krcol + (m - 1) * 3;
- k = min(i__5,i__7);
- /* ==== The following convergence test requires that */
- /* . the tradition small-compared-to-nearby-diagonals */
- /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
- /* . criteria both be satisfied. The latter improves */
- /* . accuracy in some examples. Falling back on an */
- /* . alternate convergence criterion when TST1 or TST2 */
- /* . is zero (as done here) is traditional but probably */
- /* . unnecessary. ==== */
- if (h__[k + 1 + k * h_dim1] != 0.) {
- tst1 = (d__1 = h__[k + k * h_dim1], abs(d__1)) + (d__2 =
- h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
- if (tst1 == 0.) {
- if (k >= *ktop + 1) {
- tst1 += (d__1 = h__[k + (k - 1) * h_dim1], abs(
- d__1));
- }
- if (k >= *ktop + 2) {
- tst1 += (d__1 = h__[k + (k - 2) * h_dim1], abs(
- d__1));
- }
- if (k >= *ktop + 3) {
- tst1 += (d__1 = h__[k + (k - 3) * h_dim1], abs(
- d__1));
- }
- if (k <= *kbot - 2) {
- tst1 += (d__1 = h__[k + 2 + (k + 1) * h_dim1],
- abs(d__1));
- }
- if (k <= *kbot - 3) {
- tst1 += (d__1 = h__[k + 3 + (k + 1) * h_dim1],
- abs(d__1));
- }
- if (k <= *kbot - 4) {
- tst1 += (d__1 = h__[k + 4 + (k + 1) * h_dim1],
- abs(d__1));
- }
- }
- /* Computing MAX */
- d__2 = smlnum, d__3 = ulp * tst1;
- if ((d__1 = h__[k + 1 + k * h_dim1], abs(d__1)) <= max(
- d__2,d__3)) {
- /* Computing MAX */
- d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)),
- d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs(
- d__2));
- h12 = max(d__3,d__4);
- /* Computing MIN */
- d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)),
- d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs(
- d__2));
- h21 = min(d__3,d__4);
- /* Computing MAX */
- d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
- d__1)), d__4 = (d__2 = h__[k + k * h_dim1] -
- h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
- h11 = max(d__3,d__4);
- /* Computing MIN */
- d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
- d__1)), d__4 = (d__2 = h__[k + k * h_dim1] -
- h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
- h22 = min(d__3,d__4);
- scl = h11 + h12;
- tst2 = h22 * (h11 / scl);
- /* Computing MAX */
- d__1 = smlnum, d__2 = ulp * tst2;
- if (tst2 == 0. || h21 * (h12 / scl) <= max(d__1,d__2))
- {
- h__[k + 1 + k * h_dim1] = 0.;
- }
- }
- }
- /* L130: */
- }
- /* ==== Fill in the last row of each bulge. ==== */
- /* Computing MIN */
- i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 3;
- mend = min(i__4,i__5);
- i__4 = mend;
- for (m = mtop; m <= i__4; ++m) {
- k = krcol + (m - 1) * 3;
- refsum = v[m * v_dim1 + 1] * v[m * v_dim1 + 3] * h__[k + 4 + (
- k + 3) * h_dim1];
- h__[k + 4 + (k + 1) * h_dim1] = -refsum;
- h__[k + 4 + (k + 2) * h_dim1] = -refsum * v[m * v_dim1 + 2];
- h__[k + 4 + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 + 3];
- /* L140: */
- }
- /* ==== End of near-the-diagonal bulge chase. ==== */
- /* L150: */
- }
- /* ==== Use U (if accumulated) to update far-from-diagonal */
- /* . entries in H. If required, use U to update Z as */
- /* . well. ==== */
- if (accum) {
- if (*wantt) {
- jtop = 1;
- jbot = *n;
- } else {
- jtop = *ktop;
- jbot = *kbot;
- }
- if (! blk22 || incol < *ktop || ndcol > *kbot || ns <= 2) {
- /* ==== Updates not exploiting the 2-by-2 block */
- /* . structure of U. K1 and NU keep track of */
- /* . the location and size of U in the special */
- /* . cases of introducing bulges and chasing */
- /* . bulges off the bottom. In these special */
- /* . cases and in case the number of shifts */
- /* . is NS = 2, there is no 2-by-2 block */
- /* . structure to exploit. ==== */
- /* Computing MAX */
- i__3 = 1, i__4 = *ktop - incol;
- k1 = max(i__3,i__4);
- /* Computing MAX */
- i__3 = 0, i__4 = ndcol - *kbot;
- nu = kdu - max(i__3,i__4) - k1 + 1;
- /* ==== Horizontal Multiply ==== */
- i__3 = jbot;
- i__4 = *nh;
- for (jcol = min(ndcol,*kbot) + 1; i__4 < 0 ? jcol >= i__3 :
- jcol <= i__3; jcol += i__4) {
- /* Computing MIN */
- i__5 = *nh, i__7 = jbot - jcol + 1;
- jlen = min(i__5,i__7);
- _starpu_dgemm_("C", "N", &nu, &jlen, &nu, &c_b8, &u[k1 + k1 *
- u_dim1], ldu, &h__[incol + k1 + jcol * h_dim1],
- ldh, &c_b7, &wh[wh_offset], ldwh);
- _starpu_dlacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[
- incol + k1 + jcol * h_dim1], ldh);
- /* L160: */
- }
- /* ==== Vertical multiply ==== */
- i__4 = max(*ktop,incol) - 1;
- i__3 = *nv;
- for (jrow = jtop; i__3 < 0 ? jrow >= i__4 : jrow <= i__4;
- jrow += i__3) {
- /* Computing MIN */
- i__5 = *nv, i__7 = max(*ktop,incol) - jrow;
- jlen = min(i__5,i__7);
- _starpu_dgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &h__[jrow + (
- incol + k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1],
- ldu, &c_b7, &wv[wv_offset], ldwv);
- _starpu_dlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[
- jrow + (incol + k1) * h_dim1], ldh);
- /* L170: */
- }
- /* ==== Z multiply (also vertical) ==== */
- if (*wantz) {
- i__3 = *ihiz;
- i__4 = *nv;
- for (jrow = *iloz; i__4 < 0 ? jrow >= i__3 : jrow <= i__3;
- jrow += i__4) {
- /* Computing MIN */
- i__5 = *nv, i__7 = *ihiz - jrow + 1;
- jlen = min(i__5,i__7);
- _starpu_dgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &z__[jrow + (
- incol + k1) * z_dim1], ldz, &u[k1 + k1 *
- u_dim1], ldu, &c_b7, &wv[wv_offset], ldwv);
- _starpu_dlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
- jrow + (incol + k1) * z_dim1], ldz)
- ;
- /* L180: */
- }
- }
- } else {
- /* ==== Updates exploiting U's 2-by-2 block structure. */
- /* . (I2, I4, J2, J4 are the last rows and columns */
- /* . of the blocks.) ==== */
- i2 = (kdu + 1) / 2;
- i4 = kdu;
- j2 = i4 - i2;
- j4 = kdu;
- /* ==== KZS and KNZ deal with the band of zeros */
- /* . along the diagonal of one of the triangular */
- /* . blocks. ==== */
- kzs = j4 - j2 - (ns + 1);
- knz = ns + 1;
- /* ==== Horizontal multiply ==== */
- i__4 = jbot;
- i__3 = *nh;
- for (jcol = min(ndcol,*kbot) + 1; i__3 < 0 ? jcol >= i__4 :
- jcol <= i__4; jcol += i__3) {
- /* Computing MIN */
- i__5 = *nh, i__7 = jbot - jcol + 1;
- jlen = min(i__5,i__7);
- /* ==== Copy bottom of H to top+KZS of scratch ==== */
- /* (The first KZS rows get multiplied by zero.) ==== */
- _starpu_dlacpy_("ALL", &knz, &jlen, &h__[incol + 1 + j2 + jcol *
- h_dim1], ldh, &wh[kzs + 1 + wh_dim1], ldwh);
- /* ==== Multiply by U21' ==== */
- _starpu_dlaset_("ALL", &kzs, &jlen, &c_b7, &c_b7, &wh[wh_offset],
- ldwh);
- _starpu_dtrmm_("L", "U", "C", "N", &knz, &jlen, &c_b8, &u[j2 + 1
- + (kzs + 1) * u_dim1], ldu, &wh[kzs + 1 + wh_dim1]
- , ldwh);
- /* ==== Multiply top of H by U11' ==== */
- _starpu_dgemm_("C", "N", &i2, &jlen, &j2, &c_b8, &u[u_offset],
- ldu, &h__[incol + 1 + jcol * h_dim1], ldh, &c_b8,
- &wh[wh_offset], ldwh);
- /* ==== Copy top of H to bottom of WH ==== */
- _starpu_dlacpy_("ALL", &j2, &jlen, &h__[incol + 1 + jcol * h_dim1]
- , ldh, &wh[i2 + 1 + wh_dim1], ldwh);
- /* ==== Multiply by U21' ==== */
- _starpu_dtrmm_("L", "L", "C", "N", &j2, &jlen, &c_b8, &u[(i2 + 1)
- * u_dim1 + 1], ldu, &wh[i2 + 1 + wh_dim1], ldwh);
- /* ==== Multiply by U22 ==== */
- i__5 = i4 - i2;
- i__7 = j4 - j2;
- _starpu_dgemm_("C", "N", &i__5, &jlen, &i__7, &c_b8, &u[j2 + 1 + (
- i2 + 1) * u_dim1], ldu, &h__[incol + 1 + j2 +
- jcol * h_dim1], ldh, &c_b8, &wh[i2 + 1 + wh_dim1],
- ldwh);
- /* ==== Copy it back ==== */
- _starpu_dlacpy_("ALL", &kdu, &jlen, &wh[wh_offset], ldwh, &h__[
- incol + 1 + jcol * h_dim1], ldh);
- /* L190: */
- }
- /* ==== Vertical multiply ==== */
- i__3 = max(incol,*ktop) - 1;
- i__4 = *nv;
- for (jrow = jtop; i__4 < 0 ? jrow >= i__3 : jrow <= i__3;
- jrow += i__4) {
- /* Computing MIN */
- i__5 = *nv, i__7 = max(incol,*ktop) - jrow;
- jlen = min(i__5,i__7);
- /* ==== Copy right of H to scratch (the first KZS */
- /* . columns get multiplied by zero) ==== */
- _starpu_dlacpy_("ALL", &jlen, &knz, &h__[jrow + (incol + 1 + j2) *
- h_dim1], ldh, &wv[(kzs + 1) * wv_dim1 + 1], ldwv);
- /* ==== Multiply by U21 ==== */
- _starpu_dlaset_("ALL", &jlen, &kzs, &c_b7, &c_b7, &wv[wv_offset],
- ldwv);
- _starpu_dtrmm_("R", "U", "N", "N", &jlen, &knz, &c_b8, &u[j2 + 1
- + (kzs + 1) * u_dim1], ldu, &wv[(kzs + 1) *
- wv_dim1 + 1], ldwv);
- /* ==== Multiply by U11 ==== */
- _starpu_dgemm_("N", "N", &jlen, &i2, &j2, &c_b8, &h__[jrow + (
- incol + 1) * h_dim1], ldh, &u[u_offset], ldu, &
- c_b8, &wv[wv_offset], ldwv);
- /* ==== Copy left of H to right of scratch ==== */
- _starpu_dlacpy_("ALL", &jlen, &j2, &h__[jrow + (incol + 1) *
- h_dim1], ldh, &wv[(i2 + 1) * wv_dim1 + 1], ldwv);
- /* ==== Multiply by U21 ==== */
- i__5 = i4 - i2;
- _starpu_dtrmm_("R", "L", "N", "N", &jlen, &i__5, &c_b8, &u[(i2 +
- 1) * u_dim1 + 1], ldu, &wv[(i2 + 1) * wv_dim1 + 1]
- , ldwv);
- /* ==== Multiply by U22 ==== */
- i__5 = i4 - i2;
- i__7 = j4 - j2;
- _starpu_dgemm_("N", "N", &jlen, &i__5, &i__7, &c_b8, &h__[jrow + (
- incol + 1 + j2) * h_dim1], ldh, &u[j2 + 1 + (i2 +
- 1) * u_dim1], ldu, &c_b8, &wv[(i2 + 1) * wv_dim1
- + 1], ldwv);
- /* ==== Copy it back ==== */
- _starpu_dlacpy_("ALL", &jlen, &kdu, &wv[wv_offset], ldwv, &h__[
- jrow + (incol + 1) * h_dim1], ldh);
- /* L200: */
- }
- /* ==== Multiply Z (also vertical) ==== */
- if (*wantz) {
- i__4 = *ihiz;
- i__3 = *nv;
- for (jrow = *iloz; i__3 < 0 ? jrow >= i__4 : jrow <= i__4;
- jrow += i__3) {
- /* Computing MIN */
- i__5 = *nv, i__7 = *ihiz - jrow + 1;
- jlen = min(i__5,i__7);
- /* ==== Copy right of Z to left of scratch (first */
- /* . KZS columns get multiplied by zero) ==== */
- _starpu_dlacpy_("ALL", &jlen, &knz, &z__[jrow + (incol + 1 +
- j2) * z_dim1], ldz, &wv[(kzs + 1) * wv_dim1 +
- 1], ldwv);
- /* ==== Multiply by U12 ==== */
- _starpu_dlaset_("ALL", &jlen, &kzs, &c_b7, &c_b7, &wv[
- wv_offset], ldwv);
- _starpu_dtrmm_("R", "U", "N", "N", &jlen, &knz, &c_b8, &u[j2
- + 1 + (kzs + 1) * u_dim1], ldu, &wv[(kzs + 1)
- * wv_dim1 + 1], ldwv);
- /* ==== Multiply by U11 ==== */
- _starpu_dgemm_("N", "N", &jlen, &i2, &j2, &c_b8, &z__[jrow + (
- incol + 1) * z_dim1], ldz, &u[u_offset], ldu,
- &c_b8, &wv[wv_offset], ldwv);
- /* ==== Copy left of Z to right of scratch ==== */
- _starpu_dlacpy_("ALL", &jlen, &j2, &z__[jrow + (incol + 1) *
- z_dim1], ldz, &wv[(i2 + 1) * wv_dim1 + 1],
- ldwv);
- /* ==== Multiply by U21 ==== */
- i__5 = i4 - i2;
- _starpu_dtrmm_("R", "L", "N", "N", &jlen, &i__5, &c_b8, &u[(
- i2 + 1) * u_dim1 + 1], ldu, &wv[(i2 + 1) *
- wv_dim1 + 1], ldwv);
- /* ==== Multiply by U22 ==== */
- i__5 = i4 - i2;
- i__7 = j4 - j2;
- _starpu_dgemm_("N", "N", &jlen, &i__5, &i__7, &c_b8, &z__[
- jrow + (incol + 1 + j2) * z_dim1], ldz, &u[j2
- + 1 + (i2 + 1) * u_dim1], ldu, &c_b8, &wv[(i2
- + 1) * wv_dim1 + 1], ldwv);
- /* ==== Copy the result back to Z ==== */
- _starpu_dlacpy_("ALL", &jlen, &kdu, &wv[wv_offset], ldwv, &
- z__[jrow + (incol + 1) * z_dim1], ldz);
- /* L210: */
- }
- }
- }
- }
- /* L220: */
- }
- /* ==== End of DLAQR5 ==== */
- return 0;
- } /* _starpu_dlaqr5_ */
|