123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- /* dlaic1.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b5 = 1.;
- /* Subroutine */ int _starpu_dlaic1_(integer *job, integer *j, doublereal *x,
- doublereal *sest, doublereal *w, doublereal *gamma, doublereal *
- sestpr, doublereal *s, doublereal *c__)
- {
- /* System generated locals */
- doublereal d__1, d__2, d__3, d__4;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- doublereal b, t, s1, s2, eps, tmp;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal sine, test, zeta1, zeta2, alpha, norma;
- extern doublereal _starpu_dlamch_(char *);
- doublereal absgam, absalp, cosine, absest;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAIC1 applies one step of incremental condition estimation in */
- /* its simplest version: */
- /* Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j */
- /* lower triangular matrix L, such that */
- /* twonorm(L*x) = sest */
- /* Then DLAIC1 computes sestpr, s, c such that */
- /* the vector */
- /* [ s*x ] */
- /* xhat = [ c ] */
- /* is an approximate singular vector of */
- /* [ L 0 ] */
- /* Lhat = [ w' gamma ] */
- /* in the sense that */
- /* twonorm(Lhat*xhat) = sestpr. */
- /* Depending on JOB, an estimate for the largest or smallest singular */
- /* value is computed. */
- /* Note that [s c]' and sestpr**2 is an eigenpair of the system */
- /* diag(sest*sest, 0) + [alpha gamma] * [ alpha ] */
- /* [ gamma ] */
- /* where alpha = x'*w. */
- /* Arguments */
- /* ========= */
- /* JOB (input) INTEGER */
- /* = 1: an estimate for the largest singular value is computed. */
- /* = 2: an estimate for the smallest singular value is computed. */
- /* J (input) INTEGER */
- /* Length of X and W */
- /* X (input) DOUBLE PRECISION array, dimension (J) */
- /* The j-vector x. */
- /* SEST (input) DOUBLE PRECISION */
- /* Estimated singular value of j by j matrix L */
- /* W (input) DOUBLE PRECISION array, dimension (J) */
- /* The j-vector w. */
- /* GAMMA (input) DOUBLE PRECISION */
- /* The diagonal element gamma. */
- /* SESTPR (output) DOUBLE PRECISION */
- /* Estimated singular value of (j+1) by (j+1) matrix Lhat. */
- /* S (output) DOUBLE PRECISION */
- /* Sine needed in forming xhat. */
- /* C (output) DOUBLE PRECISION */
- /* Cosine needed in forming xhat. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --w;
- --x;
- /* Function Body */
- eps = _starpu_dlamch_("Epsilon");
- alpha = _starpu_ddot_(j, &x[1], &c__1, &w[1], &c__1);
- absalp = abs(alpha);
- absgam = abs(*gamma);
- absest = abs(*sest);
- if (*job == 1) {
- /* Estimating largest singular value */
- /* special cases */
- if (*sest == 0.) {
- s1 = max(absgam,absalp);
- if (s1 == 0.) {
- *s = 0.;
- *c__ = 1.;
- *sestpr = 0.;
- } else {
- *s = alpha / s1;
- *c__ = *gamma / s1;
- tmp = sqrt(*s * *s + *c__ * *c__);
- *s /= tmp;
- *c__ /= tmp;
- *sestpr = s1 * tmp;
- }
- return 0;
- } else if (absgam <= eps * absest) {
- *s = 1.;
- *c__ = 0.;
- tmp = max(absest,absalp);
- s1 = absest / tmp;
- s2 = absalp / tmp;
- *sestpr = tmp * sqrt(s1 * s1 + s2 * s2);
- return 0;
- } else if (absalp <= eps * absest) {
- s1 = absgam;
- s2 = absest;
- if (s1 <= s2) {
- *s = 1.;
- *c__ = 0.;
- *sestpr = s2;
- } else {
- *s = 0.;
- *c__ = 1.;
- *sestpr = s1;
- }
- return 0;
- } else if (absest <= eps * absalp || absest <= eps * absgam) {
- s1 = absgam;
- s2 = absalp;
- if (s1 <= s2) {
- tmp = s1 / s2;
- *s = sqrt(tmp * tmp + 1.);
- *sestpr = s2 * *s;
- *c__ = *gamma / s2 / *s;
- *s = d_sign(&c_b5, &alpha) / *s;
- } else {
- tmp = s2 / s1;
- *c__ = sqrt(tmp * tmp + 1.);
- *sestpr = s1 * *c__;
- *s = alpha / s1 / *c__;
- *c__ = d_sign(&c_b5, gamma) / *c__;
- }
- return 0;
- } else {
- /* normal case */
- zeta1 = alpha / absest;
- zeta2 = *gamma / absest;
- b = (1. - zeta1 * zeta1 - zeta2 * zeta2) * .5;
- *c__ = zeta1 * zeta1;
- if (b > 0.) {
- t = *c__ / (b + sqrt(b * b + *c__));
- } else {
- t = sqrt(b * b + *c__) - b;
- }
- sine = -zeta1 / t;
- cosine = -zeta2 / (t + 1.);
- tmp = sqrt(sine * sine + cosine * cosine);
- *s = sine / tmp;
- *c__ = cosine / tmp;
- *sestpr = sqrt(t + 1.) * absest;
- return 0;
- }
- } else if (*job == 2) {
- /* Estimating smallest singular value */
- /* special cases */
- if (*sest == 0.) {
- *sestpr = 0.;
- if (max(absgam,absalp) == 0.) {
- sine = 1.;
- cosine = 0.;
- } else {
- sine = -(*gamma);
- cosine = alpha;
- }
- /* Computing MAX */
- d__1 = abs(sine), d__2 = abs(cosine);
- s1 = max(d__1,d__2);
- *s = sine / s1;
- *c__ = cosine / s1;
- tmp = sqrt(*s * *s + *c__ * *c__);
- *s /= tmp;
- *c__ /= tmp;
- return 0;
- } else if (absgam <= eps * absest) {
- *s = 0.;
- *c__ = 1.;
- *sestpr = absgam;
- return 0;
- } else if (absalp <= eps * absest) {
- s1 = absgam;
- s2 = absest;
- if (s1 <= s2) {
- *s = 0.;
- *c__ = 1.;
- *sestpr = s1;
- } else {
- *s = 1.;
- *c__ = 0.;
- *sestpr = s2;
- }
- return 0;
- } else if (absest <= eps * absalp || absest <= eps * absgam) {
- s1 = absgam;
- s2 = absalp;
- if (s1 <= s2) {
- tmp = s1 / s2;
- *c__ = sqrt(tmp * tmp + 1.);
- *sestpr = absest * (tmp / *c__);
- *s = -(*gamma / s2) / *c__;
- *c__ = d_sign(&c_b5, &alpha) / *c__;
- } else {
- tmp = s2 / s1;
- *s = sqrt(tmp * tmp + 1.);
- *sestpr = absest / *s;
- *c__ = alpha / s1 / *s;
- *s = -d_sign(&c_b5, gamma) / *s;
- }
- return 0;
- } else {
- /* normal case */
- zeta1 = alpha / absest;
- zeta2 = *gamma / absest;
- /* Computing MAX */
- d__3 = zeta1 * zeta1 + 1. + (d__1 = zeta1 * zeta2, abs(d__1)),
- d__4 = (d__2 = zeta1 * zeta2, abs(d__2)) + zeta2 * zeta2;
- norma = max(d__3,d__4);
- /* See if root is closer to zero or to ONE */
- test = (zeta1 - zeta2) * 2. * (zeta1 + zeta2) + 1.;
- if (test >= 0.) {
- /* root is close to zero, compute directly */
- b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.) * .5;
- *c__ = zeta2 * zeta2;
- t = *c__ / (b + sqrt((d__1 = b * b - *c__, abs(d__1))));
- sine = zeta1 / (1. - t);
- cosine = -zeta2 / t;
- *sestpr = sqrt(t + eps * 4. * eps * norma) * absest;
- } else {
- /* root is closer to ONE, shift by that amount */
- b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.) * .5;
- *c__ = zeta1 * zeta1;
- if (b >= 0.) {
- t = -(*c__) / (b + sqrt(b * b + *c__));
- } else {
- t = b - sqrt(b * b + *c__);
- }
- sine = -zeta1 / t;
- cosine = -zeta2 / (t + 1.);
- *sestpr = sqrt(t + 1. + eps * 4. * eps * norma) * absest;
- }
- tmp = sqrt(sine * sine + cosine * cosine);
- *s = sine / tmp;
- *c__ = cosine / tmp;
- return 0;
- }
- }
- return 0;
- /* End of DLAIC1 */
- } /* _starpu_dlaic1_ */
|