123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533 |
- /* dlaed2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b3 = -1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dlaed2_(integer *k, integer *n, integer *n1, doublereal *
- d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho,
- doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2,
- integer *indx, integer *indxc, integer *indxp, integer *coltyp,
- integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
- doublereal d__1, d__2, d__3, d__4;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- doublereal c__;
- integer i__, j;
- doublereal s, t;
- integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1;
- doublereal eps, tau, tol;
- integer psm[4], imax, jmax;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer ctot[4];
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *), _starpu_dcopy_(integer *, doublereal *, integer *, doublereal
- *, integer *);
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), _starpu_dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAED2 merges the two sets of eigenvalues together into a single */
- /* sorted set. Then it tries to deflate the size of the problem. */
- /* There are two ways in which deflation can occur: when two or more */
- /* eigenvalues are close together or if there is a tiny entry in the */
- /* Z vector. For each such occurrence the order of the related secular */
- /* equation problem is reduced by one. */
- /* Arguments */
- /* ========= */
- /* K (output) INTEGER */
- /* The number of non-deflated eigenvalues, and the order of the */
- /* related secular equation. 0 <= K <=N. */
- /* N (input) INTEGER */
- /* The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* N1 (input) INTEGER */
- /* The location of the last eigenvalue in the leading sub-matrix. */
- /* min(1,N) <= N1 <= N/2. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, D contains the eigenvalues of the two submatrices to */
- /* be combined. */
- /* On exit, D contains the trailing (N-K) updated eigenvalues */
- /* (those which were deflated) sorted into increasing order. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
- /* On entry, Q contains the eigenvectors of two submatrices in */
- /* the two square blocks with corners at (1,1), (N1,N1) */
- /* and (N1+1, N1+1), (N,N). */
- /* On exit, Q contains the trailing (N-K) updated eigenvectors */
- /* (those which were deflated) in its last N-K columns. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= max(1,N). */
- /* INDXQ (input/output) INTEGER array, dimension (N) */
- /* The permutation which separately sorts the two sub-problems */
- /* in D into ascending order. Note that elements in the second */
- /* half of this permutation must first have N1 added to their */
- /* values. Destroyed on exit. */
- /* RHO (input/output) DOUBLE PRECISION */
- /* On entry, the off-diagonal element associated with the rank-1 */
- /* cut which originally split the two submatrices which are now */
- /* being recombined. */
- /* On exit, RHO has been modified to the value required by */
- /* DLAED3. */
- /* Z (input) DOUBLE PRECISION array, dimension (N) */
- /* On entry, Z contains the updating vector (the last */
- /* row of the first sub-eigenvector matrix and the first row of */
- /* the second sub-eigenvector matrix). */
- /* On exit, the contents of Z have been destroyed by the updating */
- /* process. */
- /* DLAMDA (output) DOUBLE PRECISION array, dimension (N) */
- /* A copy of the first K eigenvalues which will be used by */
- /* DLAED3 to form the secular equation. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* The first k values of the final deflation-altered z-vector */
- /* which will be passed to DLAED3. */
- /* Q2 (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) */
- /* A copy of the first K eigenvectors which will be used by */
- /* DLAED3 in a matrix multiply (DGEMM) to solve for the new */
- /* eigenvectors. */
- /* INDX (workspace) INTEGER array, dimension (N) */
- /* The permutation used to sort the contents of DLAMDA into */
- /* ascending order. */
- /* INDXC (output) INTEGER array, dimension (N) */
- /* The permutation used to arrange the columns of the deflated */
- /* Q matrix into three groups: the first group contains non-zero */
- /* elements only at and above N1, the second contains */
- /* non-zero elements only below N1, and the third is dense. */
- /* INDXP (workspace) INTEGER array, dimension (N) */
- /* The permutation used to place deflated values of D at the end */
- /* of the array. INDXP(1:K) points to the nondeflated D-values */
- /* and INDXP(K+1:N) points to the deflated eigenvalues. */
- /* COLTYP (workspace/output) INTEGER array, dimension (N) */
- /* During execution, a label which will indicate which of the */
- /* following types a column in the Q2 matrix is: */
- /* 1 : non-zero in the upper half only; */
- /* 2 : dense; */
- /* 3 : non-zero in the lower half only; */
- /* 4 : deflated. */
- /* On exit, COLTYP(i) is the number of columns of type i, */
- /* for i=1 to 4 only. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Jeff Rutter, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* Modified by Francoise Tisseur, University of Tennessee. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --indxq;
- --z__;
- --dlamda;
- --w;
- --q2;
- --indx;
- --indxc;
- --indxp;
- --coltyp;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -2;
- } else if (*ldq < max(1,*n)) {
- *info = -6;
- } else /* if(complicated condition) */ {
- /* Computing MIN */
- i__1 = 1, i__2 = *n / 2;
- if (min(i__1,i__2) > *n1 || *n / 2 < *n1) {
- *info = -3;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLAED2", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- n2 = *n - *n1;
- n1p1 = *n1 + 1;
- if (*rho < 0.) {
- _starpu_dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
- }
- /* Normalize z so that norm(z) = 1. Since z is the concatenation of */
- /* two normalized vectors, norm2(z) = sqrt(2). */
- t = 1. / sqrt(2.);
- _starpu_dscal_(n, &t, &z__[1], &c__1);
- /* RHO = ABS( norm(z)**2 * RHO ) */
- *rho = (d__1 = *rho * 2., abs(d__1));
- /* Sort the eigenvalues into increasing order */
- i__1 = *n;
- for (i__ = n1p1; i__ <= i__1; ++i__) {
- indxq[i__] += *n1;
- /* L10: */
- }
- /* re-integrate the deflated parts from the last pass */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = d__[indxq[i__]];
- /* L20: */
- }
- _starpu_dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indx[i__] = indxq[indxc[i__]];
- /* L30: */
- }
- /* Calculate the allowable deflation tolerance */
- imax = _starpu_idamax_(n, &z__[1], &c__1);
- jmax = _starpu_idamax_(n, &d__[1], &c__1);
- eps = _starpu_dlamch_("Epsilon");
- /* Computing MAX */
- d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
- ;
- tol = eps * 8. * max(d__3,d__4);
- /* If the rank-1 modifier is small enough, no more needs to be done */
- /* except to reorganize Q so that its columns correspond with the */
- /* elements in D. */
- if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
- *k = 0;
- iq2 = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__ = indx[j];
- _starpu_dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
- dlamda[j] = d__[i__];
- iq2 += *n;
- /* L40: */
- }
- _starpu_dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
- _starpu_dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
- goto L190;
- }
- /* If there are multiple eigenvalues then the problem deflates. Here */
- /* the number of equal eigenvalues are found. As each equal */
- /* eigenvalue is found, an elementary reflector is computed to rotate */
- /* the corresponding eigensubspace so that the corresponding */
- /* components of Z are zero in this new basis. */
- i__1 = *n1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- coltyp[i__] = 1;
- /* L50: */
- }
- i__1 = *n;
- for (i__ = n1p1; i__ <= i__1; ++i__) {
- coltyp[i__] = 3;
- /* L60: */
- }
- *k = 0;
- k2 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- nj = indx[j];
- if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- coltyp[nj] = 4;
- indxp[k2] = nj;
- if (j == *n) {
- goto L100;
- }
- } else {
- pj = nj;
- goto L80;
- }
- /* L70: */
- }
- L80:
- ++j;
- nj = indx[j];
- if (j > *n) {
- goto L100;
- }
- if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- coltyp[nj] = 4;
- indxp[k2] = nj;
- } else {
- /* Check if eigenvalues are close enough to allow deflation. */
- s = z__[pj];
- c__ = z__[nj];
- /* Find sqrt(a**2+b**2) without overflow or */
- /* destructive underflow. */
- tau = _starpu_dlapy2_(&c__, &s);
- t = d__[nj] - d__[pj];
- c__ /= tau;
- s = -s / tau;
- if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
- /* Deflation is possible. */
- z__[nj] = tau;
- z__[pj] = 0.;
- if (coltyp[nj] != coltyp[pj]) {
- coltyp[nj] = 2;
- }
- coltyp[pj] = 4;
- _starpu_drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
- c__, &s);
- /* Computing 2nd power */
- d__1 = c__;
- /* Computing 2nd power */
- d__2 = s;
- t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
- /* Computing 2nd power */
- d__1 = s;
- /* Computing 2nd power */
- d__2 = c__;
- d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
- d__[pj] = t;
- --k2;
- i__ = 1;
- L90:
- if (k2 + i__ <= *n) {
- if (d__[pj] < d__[indxp[k2 + i__]]) {
- indxp[k2 + i__ - 1] = indxp[k2 + i__];
- indxp[k2 + i__] = pj;
- ++i__;
- goto L90;
- } else {
- indxp[k2 + i__ - 1] = pj;
- }
- } else {
- indxp[k2 + i__ - 1] = pj;
- }
- pj = nj;
- } else {
- ++(*k);
- dlamda[*k] = d__[pj];
- w[*k] = z__[pj];
- indxp[*k] = pj;
- pj = nj;
- }
- }
- goto L80;
- L100:
- /* Record the last eigenvalue. */
- ++(*k);
- dlamda[*k] = d__[pj];
- w[*k] = z__[pj];
- indxp[*k] = pj;
- /* Count up the total number of the various types of columns, then */
- /* form a permutation which positions the four column types into */
- /* four uniform groups (although one or more of these groups may be */
- /* empty). */
- for (j = 1; j <= 4; ++j) {
- ctot[j - 1] = 0;
- /* L110: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- ct = coltyp[j];
- ++ctot[ct - 1];
- /* L120: */
- }
- /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
- psm[0] = 1;
- psm[1] = ctot[0] + 1;
- psm[2] = psm[1] + ctot[1];
- psm[3] = psm[2] + ctot[2];
- *k = *n - ctot[3];
- /* Fill out the INDXC array so that the permutation which it induces */
- /* will place all type-1 columns first, all type-2 columns next, */
- /* then all type-3's, and finally all type-4's. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- js = indxp[j];
- ct = coltyp[js];
- indx[psm[ct - 1]] = js;
- indxc[psm[ct - 1]] = j;
- ++psm[ct - 1];
- /* L130: */
- }
- /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
- /* and Q2 respectively. The eigenvalues/vectors which were not */
- /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
- /* while those which were deflated go into the last N - K slots. */
- i__ = 1;
- iq1 = 1;
- iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
- i__1 = ctot[0];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- _starpu_dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq1 += *n1;
- /* L140: */
- }
- i__1 = ctot[1];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- _starpu_dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
- _starpu_dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq1 += *n1;
- iq2 += n2;
- /* L150: */
- }
- i__1 = ctot[2];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- _starpu_dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq2 += n2;
- /* L160: */
- }
- iq1 = iq2;
- i__1 = ctot[3];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- _starpu_dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
- iq2 += *n;
- z__[i__] = d__[js];
- ++i__;
- /* L170: */
- }
- /* The deflated eigenvalues and their corresponding vectors go back */
- /* into the last N - K slots of D and Q respectively. */
- _starpu_dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
- i__1 = *n - *k;
- _starpu_dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
- /* Copy CTOT into COLTYP for referencing in DLAED3. */
- for (j = 1; j <= 4; ++j) {
- coltyp[j] = ctot[j - 1];
- /* L180: */
- }
- L190:
- return 0;
- /* End of DLAED2 */
- } /* _starpu_dlaed2_ */
|