123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- /* dgttrf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dgttrf_(integer *n, doublereal *dl, doublereal *d__,
- doublereal *du, doublereal *du2, integer *ipiv, integer *info)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
- /* Local variables */
- integer i__;
- doublereal fact, temp;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGTTRF computes an LU factorization of a real tridiagonal matrix A */
- /* using elimination with partial pivoting and row interchanges. */
- /* The factorization has the form */
- /* A = L * U */
- /* where L is a product of permutation and unit lower bidiagonal */
- /* matrices and U is upper triangular with nonzeros in only the main */
- /* diagonal and first two superdiagonals. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. */
- /* DL (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, DL must contain the (n-1) sub-diagonal elements of */
- /* A. */
- /* On exit, DL is overwritten by the (n-1) multipliers that */
- /* define the matrix L from the LU factorization of A. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, D must contain the diagonal elements of A. */
- /* On exit, D is overwritten by the n diagonal elements of the */
- /* upper triangular matrix U from the LU factorization of A. */
- /* DU (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, DU must contain the (n-1) super-diagonal elements */
- /* of A. */
- /* On exit, DU is overwritten by the (n-1) elements of the first */
- /* super-diagonal of U. */
- /* DU2 (output) DOUBLE PRECISION array, dimension (N-2) */
- /* On exit, DU2 is overwritten by the (n-2) elements of the */
- /* second super-diagonal of U. */
- /* IPIV (output) INTEGER array, dimension (N) */
- /* The pivot indices; for 1 <= i <= n, row i of the matrix was */
- /* interchanged with row IPIV(i). IPIV(i) will always be either */
- /* i or i+1; IPIV(i) = i indicates a row interchange was not */
- /* required. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -k, the k-th argument had an illegal value */
- /* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */
- /* has been completed, but the factor U is exactly */
- /* singular, and division by zero will occur if it is used */
- /* to solve a system of equations. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --ipiv;
- --du2;
- --du;
- --d__;
- --dl;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- i__1 = -(*info);
- _starpu_xerbla_("DGTTRF", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Initialize IPIV(i) = i and DU2(I) = 0 */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ipiv[i__] = i__;
- /* L10: */
- }
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- du2[i__] = 0.;
- /* L20: */
- }
- i__1 = *n - 2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
- /* No row interchange required, eliminate DL(I) */
- if (d__[i__] != 0.) {
- fact = dl[i__] / d__[i__];
- dl[i__] = fact;
- d__[i__ + 1] -= fact * du[i__];
- }
- } else {
- /* Interchange rows I and I+1, eliminate DL(I) */
- fact = d__[i__] / dl[i__];
- d__[i__] = dl[i__];
- dl[i__] = fact;
- temp = du[i__];
- du[i__] = d__[i__ + 1];
- d__[i__ + 1] = temp - fact * d__[i__ + 1];
- du2[i__] = du[i__ + 1];
- du[i__ + 1] = -fact * du[i__ + 1];
- ipiv[i__] = i__ + 1;
- }
- /* L30: */
- }
- if (*n > 1) {
- i__ = *n - 1;
- if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
- if (d__[i__] != 0.) {
- fact = dl[i__] / d__[i__];
- dl[i__] = fact;
- d__[i__ + 1] -= fact * du[i__];
- }
- } else {
- fact = d__[i__] / dl[i__];
- d__[i__] = dl[i__];
- dl[i__] = fact;
- temp = du[i__];
- du[i__] = d__[i__ + 1];
- d__[i__ + 1] = temp - fact * d__[i__ + 1];
- ipiv[i__] = i__ + 1;
- }
- }
- /* Check for a zero on the diagonal of U. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] == 0.) {
- *info = i__;
- goto L50;
- }
- /* L40: */
- }
- L50:
- return 0;
- /* End of DGTTRF */
- } /* _starpu_dgttrf_ */
|