123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- /* dgtsvx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dgtsvx_(char *fact, char *trans, integer *n, integer *
- nrhs, doublereal *dl, doublereal *d__, doublereal *du, doublereal *
- dlf, doublereal *df, doublereal *duf, doublereal *du2, integer *ipiv,
- doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
- rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, x_dim1, x_offset, i__1;
- /* Local variables */
- char norm[1];
- extern logical _starpu_lsame_(char *, char *);
- doublereal anorm;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *), _starpu_dlangt_(char *, integer *,
- doublereal *, doublereal *, doublereal *);
- logical nofact;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *), _starpu_dgtcon_(char *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *), _starpu_dgtrfs_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), _starpu_dgttrf_(integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *);
- logical notran;
- extern /* Subroutine */ int _starpu_dgttrs_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGTSVX uses the LU factorization to compute the solution to a real */
- /* system of linear equations A * X = B or A**T * X = B, */
- /* where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */
- /* matrices. */
- /* Error bounds on the solution and a condition estimate are also */
- /* provided. */
- /* Description */
- /* =========== */
- /* The following steps are performed: */
- /* 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */
- /* as A = L * U, where L is a product of permutation and unit lower */
- /* bidiagonal matrices and U is upper triangular with nonzeros in */
- /* only the main diagonal and first two superdiagonals. */
- /* 2. If some U(i,i)=0, so that U is exactly singular, then the routine */
- /* returns with INFO = i. Otherwise, the factored form of A is used */
- /* to estimate the condition number of the matrix A. If the */
- /* reciprocal of the condition number is less than machine precision, */
- /* INFO = N+1 is returned as a warning, but the routine still goes on */
- /* to solve for X and compute error bounds as described below. */
- /* 3. The system of equations is solved for X using the factored form */
- /* of A. */
- /* 4. Iterative refinement is applied to improve the computed solution */
- /* matrix and calculate error bounds and backward error estimates */
- /* for it. */
- /* Arguments */
- /* ========= */
- /* FACT (input) CHARACTER*1 */
- /* Specifies whether or not the factored form of A has been */
- /* supplied on entry. */
- /* = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored */
- /* form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV */
- /* will not be modified. */
- /* = 'N': The matrix will be copied to DLF, DF, and DUF */
- /* and factored. */
- /* TRANS (input) CHARACTER*1 */
- /* Specifies the form of the system of equations: */
- /* = 'N': A * X = B (No transpose) */
- /* = 'T': A**T * X = B (Transpose) */
- /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* DL (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) subdiagonal elements of A. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The n diagonal elements of A. */
- /* DU (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) superdiagonal elements of A. */
- /* DLF (input or output) DOUBLE PRECISION array, dimension (N-1) */
- /* If FACT = 'F', then DLF is an input argument and on entry */
- /* contains the (n-1) multipliers that define the matrix L from */
- /* the LU factorization of A as computed by DGTTRF. */
- /* If FACT = 'N', then DLF is an output argument and on exit */
- /* contains the (n-1) multipliers that define the matrix L from */
- /* the LU factorization of A. */
- /* DF (input or output) DOUBLE PRECISION array, dimension (N) */
- /* If FACT = 'F', then DF is an input argument and on entry */
- /* contains the n diagonal elements of the upper triangular */
- /* matrix U from the LU factorization of A. */
- /* If FACT = 'N', then DF is an output argument and on exit */
- /* contains the n diagonal elements of the upper triangular */
- /* matrix U from the LU factorization of A. */
- /* DUF (input or output) DOUBLE PRECISION array, dimension (N-1) */
- /* If FACT = 'F', then DUF is an input argument and on entry */
- /* contains the (n-1) elements of the first superdiagonal of U. */
- /* If FACT = 'N', then DUF is an output argument and on exit */
- /* contains the (n-1) elements of the first superdiagonal of U. */
- /* DU2 (input or output) DOUBLE PRECISION array, dimension (N-2) */
- /* If FACT = 'F', then DU2 is an input argument and on entry */
- /* contains the (n-2) elements of the second superdiagonal of */
- /* U. */
- /* If FACT = 'N', then DU2 is an output argument and on exit */
- /* contains the (n-2) elements of the second superdiagonal of */
- /* U. */
- /* IPIV (input or output) INTEGER array, dimension (N) */
- /* If FACT = 'F', then IPIV is an input argument and on entry */
- /* contains the pivot indices from the LU factorization of A as */
- /* computed by DGTTRF. */
- /* If FACT = 'N', then IPIV is an output argument and on exit */
- /* contains the pivot indices from the LU factorization of A; */
- /* row i of the matrix was interchanged with row IPIV(i). */
- /* IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */
- /* a row interchange was not required. */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* The N-by-NRHS right hand side matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(1,N). */
- /* RCOND (output) DOUBLE PRECISION */
- /* The estimate of the reciprocal condition number of the matrix */
- /* A. If RCOND is less than the machine precision (in */
- /* particular, if RCOND = 0), the matrix is singular to working */
- /* precision. This condition is indicated by a return code of */
- /* INFO > 0. */
- /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The estimated forward error bound for each solution vector */
- /* X(j) (the j-th column of the solution matrix X). */
- /* If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* is an estimated upper bound for the magnitude of the largest */
- /* element in (X(j) - XTRUE) divided by the magnitude of the */
- /* largest element in X(j). The estimate is as reliable as */
- /* the estimate for RCOND, and is almost always a slight */
- /* overestimate of the true error. */
- /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The componentwise relative backward error of each solution */
- /* vector X(j) (i.e., the smallest relative change in */
- /* any element of A or B that makes X(j) an exact solution). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */
- /* IWORK (workspace) INTEGER array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is */
- /* <= N: U(i,i) is exactly zero. The factorization */
- /* has not been completed unless i = N, but the */
- /* factor U is exactly singular, so the solution */
- /* and error bounds could not be computed. */
- /* RCOND = 0 is returned. */
- /* = N+1: U is nonsingular, but RCOND is less than machine */
- /* precision, meaning that the matrix is singular */
- /* to working precision. Nevertheless, the */
- /* solution and error bounds are computed because */
- /* there are a number of situations where the */
- /* computed solution can be more accurate than the */
- /* value of RCOND would suggest. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --dl;
- --d__;
- --du;
- --dlf;
- --df;
- --duf;
- --du2;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- nofact = _starpu_lsame_(fact, "N");
- notran = _starpu_lsame_(trans, "N");
- if (! nofact && ! _starpu_lsame_(fact, "F")) {
- *info = -1;
- } else if (! notran && ! _starpu_lsame_(trans, "T") && !
- _starpu_lsame_(trans, "C")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (*ldb < max(1,*n)) {
- *info = -14;
- } else if (*ldx < max(1,*n)) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGTSVX", &i__1);
- return 0;
- }
- if (nofact) {
- /* Compute the LU factorization of A. */
- _starpu_dcopy_(n, &d__[1], &c__1, &df[1], &c__1);
- if (*n > 1) {
- i__1 = *n - 1;
- _starpu_dcopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);
- i__1 = *n - 1;
- _starpu_dcopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);
- }
- _starpu_dgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);
- /* Return if INFO is non-zero. */
- if (*info > 0) {
- *rcond = 0.;
- return 0;
- }
- }
- /* Compute the norm of the matrix A. */
- if (notran) {
- *(unsigned char *)norm = '1';
- } else {
- *(unsigned char *)norm = 'I';
- }
- anorm = _starpu_dlangt_(norm, n, &dl[1], &d__[1], &du[1]);
- /* Compute the reciprocal of the condition number of A. */
- _starpu_dgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm,
- rcond, &work[1], &iwork[1], info);
- /* Compute the solution vectors X. */
- _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- _starpu_dgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[
- x_offset], ldx, info);
- /* Use iterative refinement to improve the computed solutions and */
- /* compute error bounds and backward error estimates for them. */
- _starpu_dgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1],
- &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1]
- , &berr[1], &work[1], &iwork[1], info);
- /* Set INFO = N+1 if the matrix is singular to working precision. */
- if (*rcond < _starpu_dlamch_("Epsilon")) {
- *info = *n + 1;
- }
- return 0;
- /* End of DGTSVX */
- } /* _starpu_dgtsvx_ */
|