123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- /* dgghrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b10 = 0.;
- static doublereal c_b11 = 1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dgghrd_(char *compq, char *compz, integer *n, integer *
- ilo, integer *ihi, doublereal *a, integer *lda, doublereal *b,
- integer *ldb, doublereal *q, integer *ldq, doublereal *z__, integer *
- ldz, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1, i__2, i__3;
- /* Local variables */
- doublereal c__, s;
- logical ilq, ilz;
- integer jcol;
- doublereal temp;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer jrow;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- _starpu_dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), _starpu_xerbla_(char *, integer *);
- integer icompq, icompz;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGGHRD reduces a pair of real matrices (A,B) to generalized upper */
- /* Hessenberg form using orthogonal transformations, where A is a */
- /* general matrix and B is upper triangular. The form of the */
- /* generalized eigenvalue problem is */
- /* A*x = lambda*B*x, */
- /* and B is typically made upper triangular by computing its QR */
- /* factorization and moving the orthogonal matrix Q to the left side */
- /* of the equation. */
- /* This subroutine simultaneously reduces A to a Hessenberg matrix H: */
- /* Q**T*A*Z = H */
- /* and transforms B to another upper triangular matrix T: */
- /* Q**T*B*Z = T */
- /* in order to reduce the problem to its standard form */
- /* H*y = lambda*T*y */
- /* where y = Z**T*x. */
- /* The orthogonal matrices Q and Z are determined as products of Givens */
- /* rotations. They may either be formed explicitly, or they may be */
- /* postmultiplied into input matrices Q1 and Z1, so that */
- /* Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T */
- /* Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T */
- /* If Q1 is the orthogonal matrix from the QR factorization of B in the */
- /* original equation A*x = lambda*B*x, then DGGHRD reduces the original */
- /* problem to generalized Hessenberg form. */
- /* Arguments */
- /* ========= */
- /* COMPQ (input) CHARACTER*1 */
- /* = 'N': do not compute Q; */
- /* = 'I': Q is initialized to the unit matrix, and the */
- /* orthogonal matrix Q is returned; */
- /* = 'V': Q must contain an orthogonal matrix Q1 on entry, */
- /* and the product Q1*Q is returned. */
- /* COMPZ (input) CHARACTER*1 */
- /* = 'N': do not compute Z; */
- /* = 'I': Z is initialized to the unit matrix, and the */
- /* orthogonal matrix Z is returned; */
- /* = 'V': Z must contain an orthogonal matrix Z1 on entry, */
- /* and the product Z1*Z is returned. */
- /* N (input) INTEGER */
- /* The order of the matrices A and B. N >= 0. */
- /* ILO (input) INTEGER */
- /* IHI (input) INTEGER */
- /* ILO and IHI mark the rows and columns of A which are to be */
- /* reduced. It is assumed that A is already upper triangular */
- /* in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are */
- /* normally set by a previous call to SGGBAL; otherwise they */
- /* should be set to 1 and N respectively. */
- /* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the N-by-N general matrix to be reduced. */
- /* On exit, the upper triangle and the first subdiagonal of A */
- /* are overwritten with the upper Hessenberg matrix H, and the */
- /* rest is set to zero. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
- /* On entry, the N-by-N upper triangular matrix B. */
- /* On exit, the upper triangular matrix T = Q**T B Z. The */
- /* elements below the diagonal are set to zero. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
- /* On entry, if COMPQ = 'V', the orthogonal matrix Q1, */
- /* typically from the QR factorization of B. */
- /* On exit, if COMPQ='I', the orthogonal matrix Q, and if */
- /* COMPQ = 'V', the product Q1*Q. */
- /* Not referenced if COMPQ='N'. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. */
- /* LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
- /* On entry, if COMPZ = 'V', the orthogonal matrix Z1. */
- /* On exit, if COMPZ='I', the orthogonal matrix Z, and if */
- /* COMPZ = 'V', the product Z1*Z. */
- /* Not referenced if COMPZ='N'. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. */
- /* LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* This routine reduces A to Hessenberg and B to triangular form by */
- /* an unblocked reduction, as described in _Matrix_Computations_, */
- /* by Golub and Van Loan (Johns Hopkins Press.) */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode COMPQ */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- /* Function Body */
- if (_starpu_lsame_(compq, "N")) {
- ilq = FALSE_;
- icompq = 1;
- } else if (_starpu_lsame_(compq, "V")) {
- ilq = TRUE_;
- icompq = 2;
- } else if (_starpu_lsame_(compq, "I")) {
- ilq = TRUE_;
- icompq = 3;
- } else {
- icompq = 0;
- }
- /* Decode COMPZ */
- if (_starpu_lsame_(compz, "N")) {
- ilz = FALSE_;
- icompz = 1;
- } else if (_starpu_lsame_(compz, "V")) {
- ilz = TRUE_;
- icompz = 2;
- } else if (_starpu_lsame_(compz, "I")) {
- ilz = TRUE_;
- icompz = 3;
- } else {
- icompz = 0;
- }
- /* Test the input parameters. */
- *info = 0;
- if (icompq <= 0) {
- *info = -1;
- } else if (icompz <= 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ilo < 1) {
- *info = -4;
- } else if (*ihi > *n || *ihi < *ilo - 1) {
- *info = -5;
- } else if (*lda < max(1,*n)) {
- *info = -7;
- } else if (*ldb < max(1,*n)) {
- *info = -9;
- } else if (ilq && *ldq < *n || *ldq < 1) {
- *info = -11;
- } else if (ilz && *ldz < *n || *ldz < 1) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGGHRD", &i__1);
- return 0;
- }
- /* Initialize Q and Z if desired. */
- if (icompq == 3) {
- _starpu_dlaset_("Full", n, n, &c_b10, &c_b11, &q[q_offset], ldq);
- }
- if (icompz == 3) {
- _starpu_dlaset_("Full", n, n, &c_b10, &c_b11, &z__[z_offset], ldz);
- }
- /* Quick return if possible */
- if (*n <= 1) {
- return 0;
- }
- /* Zero out lower triangle of B */
- i__1 = *n - 1;
- for (jcol = 1; jcol <= i__1; ++jcol) {
- i__2 = *n;
- for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
- b[jrow + jcol * b_dim1] = 0.;
- /* L10: */
- }
- /* L20: */
- }
- /* Reduce A and B */
- i__1 = *ihi - 2;
- for (jcol = *ilo; jcol <= i__1; ++jcol) {
- i__2 = jcol + 2;
- for (jrow = *ihi; jrow >= i__2; --jrow) {
- /* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */
- temp = a[jrow - 1 + jcol * a_dim1];
- _starpu_dlartg_(&temp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 +
- jcol * a_dim1]);
- a[jrow + jcol * a_dim1] = 0.;
- i__3 = *n - jcol;
- _starpu_drot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (
- jcol + 1) * a_dim1], lda, &c__, &s);
- i__3 = *n + 2 - jrow;
- _starpu_drot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (
- jrow - 1) * b_dim1], ldb, &c__, &s);
- if (ilq) {
- _starpu_drot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1
- + 1], &c__1, &c__, &s);
- }
- /* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */
- temp = b[jrow + jrow * b_dim1];
- _starpu_dlartg_(&temp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow
- + jrow * b_dim1]);
- b[jrow + (jrow - 1) * b_dim1] = 0.;
- _starpu_drot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 +
- 1], &c__1, &c__, &s);
- i__3 = jrow - 1;
- _starpu_drot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1
- + 1], &c__1, &c__, &s);
- if (ilz) {
- _starpu_drot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) *
- z_dim1 + 1], &c__1, &c__, &s);
- }
- /* L30: */
- }
- /* L40: */
- }
- return 0;
- /* End of DGGHRD */
- } /* _starpu_dgghrd_ */
|