123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- /* dgeqpf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dgeqpf_(integer *m, integer *n, doublereal *a, integer *
- lda, integer *jpvt, doublereal *tau, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, ma, mn;
- doublereal aii;
- integer pvt;
- doublereal temp;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- doublereal temp2, tol3z;
- extern /* Subroutine */ int _starpu_dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *);
- integer itemp;
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dgeqr2_(integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *),
- _starpu_dorm2r_(char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dlarfp_(integer *, doublereal *, doublereal *,
- integer *, doublereal *), _starpu_xerbla_(char *, integer *);
- /* -- LAPACK deprecated driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* This routine is deprecated and has been replaced by routine DGEQP3. */
- /* DGEQPF computes a QR factorization with column pivoting of a */
- /* real M-by-N matrix A: A*P = Q*R. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0 */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, the upper triangle of the array contains the */
- /* min(M,N)-by-N upper triangular matrix R; the elements */
- /* below the diagonal, together with the array TAU, */
- /* represent the orthogonal matrix Q as a product of */
- /* min(m,n) elementary reflectors. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* JPVT (input/output) INTEGER array, dimension (N) */
- /* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
- /* to the front of A*P (a leading column); if JPVT(i) = 0, */
- /* the i-th column of A is a free column. */
- /* On exit, if JPVT(i) = k, then the i-th column of A*P */
- /* was the k-th column of A. */
- /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
- /* The scalar factors of the elementary reflectors. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The matrix Q is represented as a product of elementary reflectors */
- /* Q = H(1) H(2) . . . H(n) */
- /* Each H(i) has the form */
- /* H = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */
- /* The matrix P is represented in jpvt as follows: If */
- /* jpvt(j) = i */
- /* then the jth column of P is the ith canonical unit vector. */
- /* Partial column norm updating strategy modified by */
- /* Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
- /* University of Zagreb, Croatia. */
- /* June 2006. */
- /* For more details see LAPACK Working Note 176. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --jpvt;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEQPF", &i__1);
- return 0;
- }
- mn = min(*m,*n);
- tol3z = sqrt(_starpu_dlamch_("Epsilon"));
- /* Move initial columns up front */
- itemp = 1;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (jpvt[i__] != 0) {
- if (i__ != itemp) {
- _starpu_dswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
- &c__1);
- jpvt[i__] = jpvt[itemp];
- jpvt[itemp] = i__;
- } else {
- jpvt[i__] = i__;
- }
- ++itemp;
- } else {
- jpvt[i__] = i__;
- }
- /* L10: */
- }
- --itemp;
- /* Compute the QR factorization and update remaining columns */
- if (itemp > 0) {
- ma = min(itemp,*m);
- _starpu_dgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
- if (ma < *n) {
- i__1 = *n - ma;
- _starpu_dorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
- tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info);
- }
- }
- if (itemp < mn) {
- /* Initialize partial column norms. The first n elements of */
- /* work store the exact column norms. */
- i__1 = *n;
- for (i__ = itemp + 1; i__ <= i__1; ++i__) {
- i__2 = *m - itemp;
- work[i__] = _starpu_dnrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
- work[*n + i__] = work[i__];
- /* L20: */
- }
- /* Compute factorization */
- i__1 = mn;
- for (i__ = itemp + 1; i__ <= i__1; ++i__) {
- /* Determine ith pivot column and swap if necessary */
- i__2 = *n - i__ + 1;
- pvt = i__ - 1 + _starpu_idamax_(&i__2, &work[i__], &c__1);
- if (pvt != i__) {
- _starpu_dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
- c__1);
- itemp = jpvt[pvt];
- jpvt[pvt] = jpvt[i__];
- jpvt[i__] = itemp;
- work[pvt] = work[i__];
- work[*n + pvt] = work[*n + i__];
- }
- /* Generate elementary reflector H(i) */
- if (i__ < *m) {
- i__2 = *m - i__ + 1;
- _starpu_dlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ *
- a_dim1], &c__1, &tau[i__]);
- } else {
- _starpu_dlarfp_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
- c__1, &tau[*m]);
- }
- if (i__ < *n) {
- /* Apply H(i) to A(i:m,i+1:n) from the left */
- aii = a[i__ + i__ * a_dim1];
- a[i__ + i__ * a_dim1] = 1.;
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- _starpu_dlarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
- tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
- n << 1) + 1]);
- a[i__ + i__ * a_dim1] = aii;
- }
- /* Update partial column norms */
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- if (work[j] != 0.) {
- /* NOTE: The following 4 lines follow from the analysis in */
- /* Lapack Working Note 176. */
- temp = (d__1 = a[i__ + j * a_dim1], abs(d__1)) / work[j];
- /* Computing MAX */
- d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
- temp = max(d__1,d__2);
- /* Computing 2nd power */
- d__1 = work[j] / work[*n + j];
- temp2 = temp * (d__1 * d__1);
- if (temp2 <= tol3z) {
- if (*m - i__ > 0) {
- i__3 = *m - i__;
- work[j] = _starpu_dnrm2_(&i__3, &a[i__ + 1 + j * a_dim1],
- &c__1);
- work[*n + j] = work[j];
- } else {
- work[j] = 0.;
- work[*n + j] = 0.;
- }
- } else {
- work[j] *= sqrt(temp);
- }
- }
- /* L30: */
- }
- /* L40: */
- }
- }
- return 0;
- /* End of DGEQPF */
- } /* _starpu_dgeqpf_ */
|