123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 |
- /* dgelsx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__0 = 0;
- static doublereal c_b13 = 0.;
- static integer c__2 = 2;
- static integer c__1 = 1;
- static doublereal c_b36 = 1.;
- /* Subroutine */ int _starpu_dgelsx_(integer *m, integer *n, integer *nrhs,
- doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
- jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
- doublereal d__1;
- /* Local variables */
- integer i__, j, k;
- doublereal c1, c2, s1, s2, t1, t2;
- integer mn;
- doublereal anrm, bnrm, smin, smax;
- integer iascl, ibscl, ismin, ismax;
- extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlaic1_(
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *), _starpu_dorm2r_(
- char *, char *, integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *), _starpu_dlabad_(doublereal *, doublereal *);
- extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dgeqpf_(integer *, integer *,
- doublereal *, integer *, integer *, doublereal *, doublereal *,
- integer *), _starpu_dlaset_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), _starpu_xerbla_(char *,
- integer *);
- doublereal bignum;
- extern /* Subroutine */ int _starpu_dlatzm_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *);
- doublereal sminpr, smaxpr, smlnum;
- extern /* Subroutine */ int _starpu_dtzrqf_(integer *, integer *, doublereal *,
- integer *, doublereal *, integer *);
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* This routine is deprecated and has been replaced by routine DGELSY. */
- /* DGELSX computes the minimum-norm solution to a real linear least */
- /* squares problem: */
- /* minimize || A * X - B || */
- /* using a complete orthogonal factorization of A. A is an M-by-N */
- /* matrix which may be rank-deficient. */
- /* Several right hand side vectors b and solution vectors x can be */
- /* handled in a single call; they are stored as the columns of the */
- /* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
- /* matrix X. */
- /* The routine first computes a QR factorization with column pivoting: */
- /* A * P = Q * [ R11 R12 ] */
- /* [ 0 R22 ] */
- /* with R11 defined as the largest leading submatrix whose estimated */
- /* condition number is less than 1/RCOND. The order of R11, RANK, */
- /* is the effective rank of A. */
- /* Then, R22 is considered to be negligible, and R12 is annihilated */
- /* by orthogonal transformations from the right, arriving at the */
- /* complete orthogonal factorization: */
- /* A * P = Q * [ T11 0 ] * Z */
- /* [ 0 0 ] */
- /* The minimum-norm solution is then */
- /* X = P * Z' [ inv(T11)*Q1'*B ] */
- /* [ 0 ] */
- /* where Q1 consists of the first RANK columns of Q. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of */
- /* columns of matrices B and X. NRHS >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, A has been overwritten by details of its */
- /* complete orthogonal factorization. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the M-by-NRHS right hand side matrix B. */
- /* On exit, the N-by-NRHS solution matrix X. */
- /* If m >= n and RANK = n, the residual sum-of-squares for */
- /* the solution in the i-th column is given by the sum of */
- /* squares of elements N+1:M in that column. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,M,N). */
- /* JPVT (input/output) INTEGER array, dimension (N) */
- /* On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
- /* initial column, otherwise it is a free column. Before */
- /* the QR factorization of A, all initial columns are */
- /* permuted to the leading positions; only the remaining */
- /* free columns are moved as a result of column pivoting */
- /* during the factorization. */
- /* On exit, if JPVT(i) = k, then the i-th column of A*P */
- /* was the k-th column of A. */
- /* RCOND (input) DOUBLE PRECISION */
- /* RCOND is used to determine the effective rank of A, which */
- /* is defined as the order of the largest leading triangular */
- /* submatrix R11 in the QR factorization with pivoting of A, */
- /* whose estimated condition number < 1/RCOND. */
- /* RANK (output) INTEGER */
- /* The effective rank of A, i.e., the order of the submatrix */
- /* R11. This is the same as the order of the submatrix T11 */
- /* in the complete orthogonal factorization of A. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension */
- /* (max( min(M,N)+3*N, 2*min(M,N)+NRHS )), */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --jpvt;
- --work;
- /* Function Body */
- mn = min(*m,*n);
- ismin = mn + 1;
- ismax = (mn << 1) + 1;
- /* Test the input arguments. */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*nrhs < 0) {
- *info = -3;
- } else if (*lda < max(1,*m)) {
- *info = -5;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = max(1,*m);
- if (*ldb < max(i__1,*n)) {
- *info = -7;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGELSX", &i__1);
- return 0;
- }
- /* Quick return if possible */
- /* Computing MIN */
- i__1 = min(*m,*n);
- if (min(i__1,*nrhs) == 0) {
- *rank = 0;
- return 0;
- }
- /* Get machine parameters */
- smlnum = _starpu_dlamch_("S") / _starpu_dlamch_("P");
- bignum = 1. / smlnum;
- _starpu_dlabad_(&smlnum, &bignum);
- /* Scale A, B if max elements outside range [SMLNUM,BIGNUM] */
- anrm = _starpu_dlange_("M", m, n, &a[a_offset], lda, &work[1]);
- iascl = 0;
- if (anrm > 0. && anrm < smlnum) {
- /* Scale matrix norm up to SMLNUM */
- _starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
- /* Scale matrix norm down to BIGNUM */
- _starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.) {
- /* Matrix all zero. Return zero solution. */
- i__1 = max(*m,*n);
- _starpu_dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
- *rank = 0;
- goto L100;
- }
- bnrm = _starpu_dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
- ibscl = 0;
- if (bnrm > 0. && bnrm < smlnum) {
- /* Scale matrix norm up to SMLNUM */
- _starpu_dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 1;
- } else if (bnrm > bignum) {
- /* Scale matrix norm down to BIGNUM */
- _starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
- info);
- ibscl = 2;
- }
- /* Compute QR factorization with column pivoting of A: */
- /* A * P = Q * R */
- _starpu_dgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], info);
- /* workspace 3*N. Details of Householder rotations stored */
- /* in WORK(1:MN). */
- /* Determine RANK using incremental condition estimation */
- work[ismin] = 1.;
- work[ismax] = 1.;
- smax = (d__1 = a[a_dim1 + 1], abs(d__1));
- smin = smax;
- if ((d__1 = a[a_dim1 + 1], abs(d__1)) == 0.) {
- *rank = 0;
- i__1 = max(*m,*n);
- _starpu_dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
- goto L100;
- } else {
- *rank = 1;
- }
- L10:
- if (*rank < mn) {
- i__ = *rank + 1;
- _starpu_dlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
- i__ + i__ * a_dim1], &sminpr, &s1, &c1);
- _starpu_dlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
- i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
- if (smaxpr * *rcond <= sminpr) {
- i__1 = *rank;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
- work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
- /* L20: */
- }
- work[ismin + *rank] = c1;
- work[ismax + *rank] = c2;
- smin = sminpr;
- smax = smaxpr;
- ++(*rank);
- goto L10;
- }
- }
- /* Logically partition R = [ R11 R12 ] */
- /* [ 0 R22 ] */
- /* where R11 = R(1:RANK,1:RANK) */
- /* [R11,R12] = [ T11, 0 ] * Y */
- if (*rank < *n) {
- _starpu_dtzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
- }
- /* Details of Householder rotations stored in WORK(MN+1:2*MN) */
- /* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */
- _starpu_dorm2r_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
- b[b_offset], ldb, &work[(mn << 1) + 1], info);
- /* workspace NRHS */
- /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
- _starpu_dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b36, &
- a[a_offset], lda, &b[b_offset], ldb);
- i__1 = *n;
- for (i__ = *rank + 1; i__ <= i__1; ++i__) {
- i__2 = *nrhs;
- for (j = 1; j <= i__2; ++j) {
- b[i__ + j * b_dim1] = 0.;
- /* L30: */
- }
- /* L40: */
- }
- /* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */
- if (*rank < *n) {
- i__1 = *rank;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n - *rank + 1;
- _starpu_dlatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
- &work[mn + i__], &b[i__ + b_dim1], &b[*rank + 1 + b_dim1],
- ldb, &work[(mn << 1) + 1]);
- /* L50: */
- }
- }
- /* workspace NRHS */
- /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[(mn << 1) + i__] = 1.;
- /* L60: */
- }
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (work[(mn << 1) + i__] == 1.) {
- if (jpvt[i__] != i__) {
- k = i__;
- t1 = b[k + j * b_dim1];
- t2 = b[jpvt[k] + j * b_dim1];
- L70:
- b[jpvt[k] + j * b_dim1] = t1;
- work[(mn << 1) + k] = 0.;
- t1 = t2;
- k = jpvt[k];
- t2 = b[jpvt[k] + j * b_dim1];
- if (jpvt[k] != i__) {
- goto L70;
- }
- b[i__ + j * b_dim1] = t1;
- work[(mn << 1) + k] = 0.;
- }
- }
- /* L80: */
- }
- /* L90: */
- }
- /* Undo scaling */
- if (iascl == 1) {
- _starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
- info);
- _starpu_dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
- lda, info);
- } else if (iascl == 2) {
- _starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
- info);
- _starpu_dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
- lda, info);
- }
- if (ibscl == 1) {
- _starpu_dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- } else if (ibscl == 2) {
- _starpu_dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
- info);
- }
- L100:
- return 0;
- /* End of DGELSX */
- } /* _starpu_dgelsx_ */
|