123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- /* dgehrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
- static integer c__65 = 65;
- static doublereal c_b25 = -1.;
- static doublereal c_b26 = 1.;
- /* Subroutine */ int _starpu_dgehrd_(integer *n, integer *ilo, integer *ihi,
- doublereal *a, integer *lda, doublereal *tau, doublereal *work,
- integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- /* Local variables */
- integer i__, j;
- doublereal t[4160] /* was [65][64] */;
- integer ib;
- doublereal ei;
- integer nb, nh, nx, iws;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer nbmin, iinfo;
- extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), _starpu_daxpy_(
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *), _starpu_dgehd2_(integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *), _starpu_dlahr2_(
- integer *, integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *),
- _starpu_dlarfb_(char *, char *, char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer ldwork, lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGEHRD reduces a real general matrix A to upper Hessenberg form H by */
- /* an orthogonal similarity transformation: Q' * A * Q = H . */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* ILO (input) INTEGER */
- /* IHI (input) INTEGER */
- /* It is assumed that A is already upper triangular in rows */
- /* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
- /* set by a previous call to DGEBAL; otherwise they should be */
- /* set to 1 and N respectively. See Further Details. */
- /* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the N-by-N general matrix to be reduced. */
- /* On exit, the upper triangle and the first subdiagonal of A */
- /* are overwritten with the upper Hessenberg matrix H, and the */
- /* elements below the first subdiagonal, with the array TAU, */
- /* represent the orthogonal matrix Q as a product of elementary */
- /* reflectors. See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* TAU (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The scalar factors of the elementary reflectors (see Further */
- /* Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to */
- /* zero. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The length of the array WORK. LWORK >= max(1,N). */
- /* For optimum performance LWORK >= N*NB, where NB is the */
- /* optimal blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* The matrix Q is represented as a product of (ihi-ilo) elementary */
- /* reflectors */
- /* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
- /* exit in A(i+2:ihi,i), and tau in TAU(i). */
- /* The contents of A are illustrated by the following example, with */
- /* n = 7, ilo = 2 and ihi = 6: */
- /* on entry, on exit, */
- /* ( a a a a a a a ) ( a a h h h h a ) */
- /* ( a a a a a a ) ( a h h h h a ) */
- /* ( a a a a a a ) ( h h h h h h ) */
- /* ( a a a a a a ) ( v2 h h h h h ) */
- /* ( a a a a a a ) ( v2 v3 h h h h ) */
- /* ( a a a a a a ) ( v2 v3 v4 h h h ) */
- /* ( a ) ( a ) */
- /* where a denotes an element of the original matrix A, h denotes a */
- /* modified element of the upper Hessenberg matrix H, and vi denotes an */
- /* element of the vector defining H(i). */
- /* This file is a slight modification of LAPACK-3.0's DGEHRD */
- /* subroutine incorporating improvements proposed by Quintana-Orti and */
- /* Van de Geijn (2005). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- /* Computing MIN */
- i__1 = 64, i__2 = _starpu_ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1);
- nb = min(i__1,i__2);
- lwkopt = *n * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*lwork < max(1,*n) && ! lquery) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEHRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
- i__1 = *ilo - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tau[i__] = 0.;
- /* L10: */
- }
- i__1 = *n - 1;
- for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {
- tau[i__] = 0.;
- /* L20: */
- }
- /* Quick return if possible */
- nh = *ihi - *ilo + 1;
- if (nh <= 1) {
- work[1] = 1.;
- return 0;
- }
- /* Determine the block size */
- /* Computing MIN */
- i__1 = 64, i__2 = _starpu_ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1);
- nb = min(i__1,i__2);
- nbmin = 2;
- iws = 1;
- if (nb > 1 && nb < nh) {
- /* Determine when to cross over from blocked to unblocked code */
- /* (last block is always handled by unblocked code) */
- /* Computing MAX */
- i__1 = nb, i__2 = _starpu_ilaenv_(&c__3, "DGEHRD", " ", n, ilo, ihi, &c_n1);
- nx = max(i__1,i__2);
- if (nx < nh) {
- /* Determine if workspace is large enough for blocked code */
- iws = *n * nb;
- if (*lwork < iws) {
- /* Not enough workspace to use optimal NB: determine the */
- /* minimum value of NB, and reduce NB or force use of */
- /* unblocked code */
- /* Computing MAX */
- i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGEHRD", " ", n, ilo, ihi, &
- c_n1);
- nbmin = max(i__1,i__2);
- if (*lwork >= *n * nbmin) {
- nb = *lwork / *n;
- } else {
- nb = 1;
- }
- }
- }
- }
- ldwork = *n;
- if (nb < nbmin || nb >= nh) {
- /* Use unblocked code below */
- i__ = *ilo;
- } else {
- /* Use blocked code */
- i__1 = *ihi - 1 - nx;
- i__2 = nb;
- for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- /* Computing MIN */
- i__3 = nb, i__4 = *ihi - i__;
- ib = min(i__3,i__4);
- /* Reduce columns i:i+ib-1 to Hessenberg form, returning the */
- /* matrices V and T of the block reflector H = I - V*T*V' */
- /* which performs the reduction, and also the matrix Y = A*V*T */
- _starpu_dlahr2_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &
- c__65, &work[1], &ldwork);
- /* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the */
- /* right, computing A := A - Y * V'. V(i+ib,ib-1) must be set */
- /* to 1 */
- ei = a[i__ + ib + (i__ + ib - 1) * a_dim1];
- a[i__ + ib + (i__ + ib - 1) * a_dim1] = 1.;
- i__3 = *ihi - i__ - ib + 1;
- _starpu_dgemm_("No transpose", "Transpose", ihi, &i__3, &ib, &c_b25, &
- work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &
- c_b26, &a[(i__ + ib) * a_dim1 + 1], lda);
- a[i__ + ib + (i__ + ib - 1) * a_dim1] = ei;
- /* Apply the block reflector H to A(1:i,i+1:i+ib-1) from the */
- /* right */
- i__3 = ib - 1;
- _starpu_dtrmm_("Right", "Lower", "Transpose", "Unit", &i__, &i__3, &c_b26,
- &a[i__ + 1 + i__ * a_dim1], lda, &work[1], &ldwork);
- i__3 = ib - 2;
- for (j = 0; j <= i__3; ++j) {
- _starpu_daxpy_(&i__, &c_b25, &work[ldwork * j + 1], &c__1, &a[(i__ +
- j + 1) * a_dim1 + 1], &c__1);
- /* L30: */
- }
- /* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the */
- /* left */
- i__3 = *ihi - i__;
- i__4 = *n - i__ - ib + 1;
- _starpu_dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
- i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &c__65, &a[
- i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &ldwork);
- /* L40: */
- }
- }
- /* Use unblocked code to reduce the rest of the matrix */
- _starpu_dgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
- work[1] = (doublereal) iws;
- return 0;
- /* End of DGEHRD */
- } /* _starpu_dgehrd_ */
|