dgeev.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. /* dgeev.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. static integer c__0 = 0;
  16. static integer c_n1 = -1;
  17. /* Subroutine */ int _starpu_dgeev_(char *jobvl, char *jobvr, integer *n, doublereal *
  18. a, integer *lda, doublereal *wr, doublereal *wi, doublereal *vl,
  19. integer *ldvl, doublereal *vr, integer *ldvr, doublereal *work,
  20. integer *lwork, integer *info)
  21. {
  22. /* System generated locals */
  23. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  24. i__2, i__3;
  25. doublereal d__1, d__2;
  26. /* Builtin functions */
  27. double sqrt(doublereal);
  28. /* Local variables */
  29. integer i__, k;
  30. doublereal r__, cs, sn;
  31. integer ihi;
  32. doublereal scl;
  33. integer ilo;
  34. doublereal dum[1], eps;
  35. integer ibal;
  36. char side[1];
  37. doublereal anrm;
  38. integer ierr, itau;
  39. extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
  40. doublereal *, integer *, doublereal *, doublereal *);
  41. integer iwrk, nout;
  42. extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
  43. extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
  44. integer *);
  45. extern logical _starpu_lsame_(char *, char *);
  46. extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
  47. extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *), _starpu_dgebak_(
  48. char *, char *, integer *, integer *, integer *, doublereal *,
  49. integer *, doublereal *, integer *, integer *),
  50. _starpu_dgebal_(char *, integer *, doublereal *, integer *, integer *,
  51. integer *, doublereal *, integer *);
  52. logical scalea;
  53. extern doublereal _starpu_dlamch_(char *);
  54. doublereal cscale;
  55. extern doublereal _starpu_dlange_(char *, integer *, integer *, doublereal *,
  56. integer *, doublereal *);
  57. extern /* Subroutine */ int _starpu_dgehrd_(integer *, integer *, integer *,
  58. doublereal *, integer *, doublereal *, doublereal *, integer *,
  59. integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal *,
  60. doublereal *, integer *, integer *, doublereal *, integer *,
  61. integer *);
  62. extern integer _starpu_idamax_(integer *, doublereal *, integer *);
  63. extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
  64. doublereal *, integer *, doublereal *, integer *),
  65. _starpu_dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  66. doublereal *), _starpu_xerbla_(char *, integer *);
  67. logical select[1];
  68. extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
  69. integer *, integer *);
  70. doublereal bignum;
  71. extern /* Subroutine */ int _starpu_dorghr_(integer *, integer *, integer *,
  72. doublereal *, integer *, doublereal *, doublereal *, integer *,
  73. integer *), _starpu_dhseqr_(char *, char *, integer *, integer *, integer
  74. *, doublereal *, integer *, doublereal *, doublereal *,
  75. doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dtrevc_(char *, char *, logical *, integer *,
  76. doublereal *, integer *, doublereal *, integer *, doublereal *,
  77. integer *, integer *, integer *, doublereal *, integer *);
  78. integer minwrk, maxwrk;
  79. logical wantvl;
  80. doublereal smlnum;
  81. integer hswork;
  82. logical lquery, wantvr;
  83. /* -- LAPACK driver routine (version 3.2) -- */
  84. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  85. /* November 2006 */
  86. /* .. Scalar Arguments .. */
  87. /* .. */
  88. /* .. Array Arguments .. */
  89. /* .. */
  90. /* Purpose */
  91. /* ======= */
  92. /* DGEEV computes for an N-by-N real nonsymmetric matrix A, the */
  93. /* eigenvalues and, optionally, the left and/or right eigenvectors. */
  94. /* The right eigenvector v(j) of A satisfies */
  95. /* A * v(j) = lambda(j) * v(j) */
  96. /* where lambda(j) is its eigenvalue. */
  97. /* The left eigenvector u(j) of A satisfies */
  98. /* u(j)**H * A = lambda(j) * u(j)**H */
  99. /* where u(j)**H denotes the conjugate transpose of u(j). */
  100. /* The computed eigenvectors are normalized to have Euclidean norm */
  101. /* equal to 1 and largest component real. */
  102. /* Arguments */
  103. /* ========= */
  104. /* JOBVL (input) CHARACTER*1 */
  105. /* = 'N': left eigenvectors of A are not computed; */
  106. /* = 'V': left eigenvectors of A are computed. */
  107. /* JOBVR (input) CHARACTER*1 */
  108. /* = 'N': right eigenvectors of A are not computed; */
  109. /* = 'V': right eigenvectors of A are computed. */
  110. /* N (input) INTEGER */
  111. /* The order of the matrix A. N >= 0. */
  112. /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
  113. /* On entry, the N-by-N matrix A. */
  114. /* On exit, A has been overwritten. */
  115. /* LDA (input) INTEGER */
  116. /* The leading dimension of the array A. LDA >= max(1,N). */
  117. /* WR (output) DOUBLE PRECISION array, dimension (N) */
  118. /* WI (output) DOUBLE PRECISION array, dimension (N) */
  119. /* WR and WI contain the real and imaginary parts, */
  120. /* respectively, of the computed eigenvalues. Complex */
  121. /* conjugate pairs of eigenvalues appear consecutively */
  122. /* with the eigenvalue having the positive imaginary part */
  123. /* first. */
  124. /* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) */
  125. /* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  126. /* after another in the columns of VL, in the same order */
  127. /* as their eigenvalues. */
  128. /* If JOBVL = 'N', VL is not referenced. */
  129. /* If the j-th eigenvalue is real, then u(j) = VL(:,j), */
  130. /* the j-th column of VL. */
  131. /* If the j-th and (j+1)-st eigenvalues form a complex */
  132. /* conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
  133. /* u(j+1) = VL(:,j) - i*VL(:,j+1). */
  134. /* LDVL (input) INTEGER */
  135. /* The leading dimension of the array VL. LDVL >= 1; if */
  136. /* JOBVL = 'V', LDVL >= N. */
  137. /* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) */
  138. /* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  139. /* after another in the columns of VR, in the same order */
  140. /* as their eigenvalues. */
  141. /* If JOBVR = 'N', VR is not referenced. */
  142. /* If the j-th eigenvalue is real, then v(j) = VR(:,j), */
  143. /* the j-th column of VR. */
  144. /* If the j-th and (j+1)-st eigenvalues form a complex */
  145. /* conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
  146. /* v(j+1) = VR(:,j) - i*VR(:,j+1). */
  147. /* LDVR (input) INTEGER */
  148. /* The leading dimension of the array VR. LDVR >= 1; if */
  149. /* JOBVR = 'V', LDVR >= N. */
  150. /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  151. /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  152. /* LWORK (input) INTEGER */
  153. /* The dimension of the array WORK. LWORK >= max(1,3*N), and */
  154. /* if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good */
  155. /* performance, LWORK must generally be larger. */
  156. /* If LWORK = -1, then a workspace query is assumed; the routine */
  157. /* only calculates the optimal size of the WORK array, returns */
  158. /* this value as the first entry of the WORK array, and no error */
  159. /* message related to LWORK is issued by XERBLA. */
  160. /* INFO (output) INTEGER */
  161. /* = 0: successful exit */
  162. /* < 0: if INFO = -i, the i-th argument had an illegal value. */
  163. /* > 0: if INFO = i, the QR algorithm failed to compute all the */
  164. /* eigenvalues, and no eigenvectors have been computed; */
  165. /* elements i+1:N of WR and WI contain eigenvalues which */
  166. /* have converged. */
  167. /* ===================================================================== */
  168. /* .. Parameters .. */
  169. /* .. */
  170. /* .. Local Scalars .. */
  171. /* .. */
  172. /* .. Local Arrays .. */
  173. /* .. */
  174. /* .. External Subroutines .. */
  175. /* .. */
  176. /* .. External Functions .. */
  177. /* .. */
  178. /* .. Intrinsic Functions .. */
  179. /* .. */
  180. /* .. Executable Statements .. */
  181. /* Test the input arguments */
  182. /* Parameter adjustments */
  183. a_dim1 = *lda;
  184. a_offset = 1 + a_dim1;
  185. a -= a_offset;
  186. --wr;
  187. --wi;
  188. vl_dim1 = *ldvl;
  189. vl_offset = 1 + vl_dim1;
  190. vl -= vl_offset;
  191. vr_dim1 = *ldvr;
  192. vr_offset = 1 + vr_dim1;
  193. vr -= vr_offset;
  194. --work;
  195. /* Function Body */
  196. *info = 0;
  197. lquery = *lwork == -1;
  198. wantvl = _starpu_lsame_(jobvl, "V");
  199. wantvr = _starpu_lsame_(jobvr, "V");
  200. if (! wantvl && ! _starpu_lsame_(jobvl, "N")) {
  201. *info = -1;
  202. } else if (! wantvr && ! _starpu_lsame_(jobvr, "N")) {
  203. *info = -2;
  204. } else if (*n < 0) {
  205. *info = -3;
  206. } else if (*lda < max(1,*n)) {
  207. *info = -5;
  208. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  209. *info = -9;
  210. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  211. *info = -11;
  212. }
  213. /* Compute workspace */
  214. /* (Note: Comments in the code beginning "Workspace:" describe the */
  215. /* minimal amount of workspace needed at that point in the code, */
  216. /* as well as the preferred amount for good performance. */
  217. /* NB refers to the optimal block size for the immediately */
  218. /* following subroutine, as returned by ILAENV. */
  219. /* HSWORK refers to the workspace preferred by DHSEQR, as */
  220. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  221. /* the worst case.) */
  222. if (*info == 0) {
  223. if (*n == 0) {
  224. minwrk = 1;
  225. maxwrk = 1;
  226. } else {
  227. maxwrk = (*n << 1) + *n * _starpu_ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
  228. n, &c__0);
  229. if (wantvl) {
  230. minwrk = *n << 2;
  231. /* Computing MAX */
  232. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * _starpu_ilaenv_(&c__1,
  233. "DORGHR", " ", n, &c__1, n, &c_n1);
  234. maxwrk = max(i__1,i__2);
  235. _starpu_dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  236. 1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
  237. hswork = (integer) work[1];
  238. /* Computing MAX */
  239. i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *
  240. n + hswork;
  241. maxwrk = max(i__1,i__2);
  242. /* Computing MAX */
  243. i__1 = maxwrk, i__2 = *n << 2;
  244. maxwrk = max(i__1,i__2);
  245. } else if (wantvr) {
  246. minwrk = *n << 2;
  247. /* Computing MAX */
  248. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * _starpu_ilaenv_(&c__1,
  249. "DORGHR", " ", n, &c__1, n, &c_n1);
  250. maxwrk = max(i__1,i__2);
  251. _starpu_dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  252. 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
  253. hswork = (integer) work[1];
  254. /* Computing MAX */
  255. i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *
  256. n + hswork;
  257. maxwrk = max(i__1,i__2);
  258. /* Computing MAX */
  259. i__1 = maxwrk, i__2 = *n << 2;
  260. maxwrk = max(i__1,i__2);
  261. } else {
  262. minwrk = *n * 3;
  263. _starpu_dhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
  264. 1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
  265. hswork = (integer) work[1];
  266. /* Computing MAX */
  267. i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *
  268. n + hswork;
  269. maxwrk = max(i__1,i__2);
  270. }
  271. maxwrk = max(maxwrk,minwrk);
  272. }
  273. work[1] = (doublereal) maxwrk;
  274. if (*lwork < minwrk && ! lquery) {
  275. *info = -13;
  276. }
  277. }
  278. if (*info != 0) {
  279. i__1 = -(*info);
  280. _starpu_xerbla_("DGEEV ", &i__1);
  281. return 0;
  282. } else if (lquery) {
  283. return 0;
  284. }
  285. /* Quick return if possible */
  286. if (*n == 0) {
  287. return 0;
  288. }
  289. /* Get machine constants */
  290. eps = _starpu_dlamch_("P");
  291. smlnum = _starpu_dlamch_("S");
  292. bignum = 1. / smlnum;
  293. _starpu_dlabad_(&smlnum, &bignum);
  294. smlnum = sqrt(smlnum) / eps;
  295. bignum = 1. / smlnum;
  296. /* Scale A if max element outside range [SMLNUM,BIGNUM] */
  297. anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, dum);
  298. scalea = FALSE_;
  299. if (anrm > 0. && anrm < smlnum) {
  300. scalea = TRUE_;
  301. cscale = smlnum;
  302. } else if (anrm > bignum) {
  303. scalea = TRUE_;
  304. cscale = bignum;
  305. }
  306. if (scalea) {
  307. _starpu_dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  308. ierr);
  309. }
  310. /* Balance the matrix */
  311. /* (Workspace: need N) */
  312. ibal = 1;
  313. _starpu_dgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
  314. /* Reduce to upper Hessenberg form */
  315. /* (Workspace: need 3*N, prefer 2*N+N*NB) */
  316. itau = ibal + *n;
  317. iwrk = itau + *n;
  318. i__1 = *lwork - iwrk + 1;
  319. _starpu_dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  320. &ierr);
  321. if (wantvl) {
  322. /* Want left eigenvectors */
  323. /* Copy Householder vectors to VL */
  324. *(unsigned char *)side = 'L';
  325. _starpu_dlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  326. ;
  327. /* Generate orthogonal matrix in VL */
  328. /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  329. i__1 = *lwork - iwrk + 1;
  330. _starpu_dorghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
  331. &i__1, &ierr);
  332. /* Perform QR iteration, accumulating Schur vectors in VL */
  333. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  334. iwrk = itau;
  335. i__1 = *lwork - iwrk + 1;
  336. _starpu_dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
  337. vl[vl_offset], ldvl, &work[iwrk], &i__1, info);
  338. if (wantvr) {
  339. /* Want left and right eigenvectors */
  340. /* Copy Schur vectors to VR */
  341. *(unsigned char *)side = 'B';
  342. _starpu_dlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  343. }
  344. } else if (wantvr) {
  345. /* Want right eigenvectors */
  346. /* Copy Householder vectors to VR */
  347. *(unsigned char *)side = 'R';
  348. _starpu_dlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  349. ;
  350. /* Generate orthogonal matrix in VR */
  351. /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  352. i__1 = *lwork - iwrk + 1;
  353. _starpu_dorghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
  354. &i__1, &ierr);
  355. /* Perform QR iteration, accumulating Schur vectors in VR */
  356. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  357. iwrk = itau;
  358. i__1 = *lwork - iwrk + 1;
  359. _starpu_dhseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
  360. vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
  361. } else {
  362. /* Compute eigenvalues only */
  363. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  364. iwrk = itau;
  365. i__1 = *lwork - iwrk + 1;
  366. _starpu_dhseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
  367. vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
  368. }
  369. /* If INFO > 0 from DHSEQR, then quit */
  370. if (*info > 0) {
  371. goto L50;
  372. }
  373. if (wantvl || wantvr) {
  374. /* Compute left and/or right eigenvectors */
  375. /* (Workspace: need 4*N) */
  376. _starpu_dtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
  377. &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
  378. }
  379. if (wantvl) {
  380. /* Undo balancing of left eigenvectors */
  381. /* (Workspace: need N) */
  382. _starpu_dgebak_("B", "L", n, &ilo, &ihi, &work[ibal], n, &vl[vl_offset], ldvl,
  383. &ierr);
  384. /* Normalize left eigenvectors and make largest component real */
  385. i__1 = *n;
  386. for (i__ = 1; i__ <= i__1; ++i__) {
  387. if (wi[i__] == 0.) {
  388. scl = 1. / _starpu_dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  389. _starpu_dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  390. } else if (wi[i__] > 0.) {
  391. d__1 = _starpu_dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  392. d__2 = _starpu_dnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  393. scl = 1. / _starpu_dlapy2_(&d__1, &d__2);
  394. _starpu_dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  395. _starpu_dscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
  396. i__2 = *n;
  397. for (k = 1; k <= i__2; ++k) {
  398. /* Computing 2nd power */
  399. d__1 = vl[k + i__ * vl_dim1];
  400. /* Computing 2nd power */
  401. d__2 = vl[k + (i__ + 1) * vl_dim1];
  402. work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
  403. /* L10: */
  404. }
  405. k = _starpu_idamax_(n, &work[iwrk], &c__1);
  406. _starpu_dlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
  407. &cs, &sn, &r__);
  408. _starpu_drot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
  409. vl_dim1 + 1], &c__1, &cs, &sn);
  410. vl[k + (i__ + 1) * vl_dim1] = 0.;
  411. }
  412. /* L20: */
  413. }
  414. }
  415. if (wantvr) {
  416. /* Undo balancing of right eigenvectors */
  417. /* (Workspace: need N) */
  418. _starpu_dgebak_("B", "R", n, &ilo, &ihi, &work[ibal], n, &vr[vr_offset], ldvr,
  419. &ierr);
  420. /* Normalize right eigenvectors and make largest component real */
  421. i__1 = *n;
  422. for (i__ = 1; i__ <= i__1; ++i__) {
  423. if (wi[i__] == 0.) {
  424. scl = 1. / _starpu_dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  425. _starpu_dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  426. } else if (wi[i__] > 0.) {
  427. d__1 = _starpu_dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  428. d__2 = _starpu_dnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  429. scl = 1. / _starpu_dlapy2_(&d__1, &d__2);
  430. _starpu_dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  431. _starpu_dscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
  432. i__2 = *n;
  433. for (k = 1; k <= i__2; ++k) {
  434. /* Computing 2nd power */
  435. d__1 = vr[k + i__ * vr_dim1];
  436. /* Computing 2nd power */
  437. d__2 = vr[k + (i__ + 1) * vr_dim1];
  438. work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
  439. /* L30: */
  440. }
  441. k = _starpu_idamax_(n, &work[iwrk], &c__1);
  442. _starpu_dlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
  443. &cs, &sn, &r__);
  444. _starpu_drot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
  445. vr_dim1 + 1], &c__1, &cs, &sn);
  446. vr[k + (i__ + 1) * vr_dim1] = 0.;
  447. }
  448. /* L40: */
  449. }
  450. }
  451. /* Undo scaling if necessary */
  452. L50:
  453. if (scalea) {
  454. i__1 = *n - *info;
  455. /* Computing MAX */
  456. i__3 = *n - *info;
  457. i__2 = max(i__3,1);
  458. _starpu_dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
  459. 1], &i__2, &ierr);
  460. i__1 = *n - *info;
  461. /* Computing MAX */
  462. i__3 = *n - *info;
  463. i__2 = max(i__3,1);
  464. _starpu_dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
  465. 1], &i__2, &ierr);
  466. if (*info > 0) {
  467. i__1 = ilo - 1;
  468. _starpu_dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
  469. n, &ierr);
  470. i__1 = ilo - 1;
  471. _starpu_dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
  472. n, &ierr);
  473. }
  474. }
  475. work[1] = (doublereal) maxwrk;
  476. return 0;
  477. /* End of DGEEV */
  478. } /* _starpu_dgeev_ */