| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363 | 
							- /* dsymm.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dsymm_(char *side, char *uplo, integer *m, integer *n, 
 
- 	doublereal *alpha, doublereal *a, integer *lda, doublereal *b, 
 
- 	integer *ldb, doublereal *beta, doublereal *c__, integer *ldc)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
 
- 	    i__3;
 
-     /* Local variables */
 
-     integer i__, j, k, info;
 
-     doublereal temp1, temp2;
 
-     extern logical lsame_(char *, char *);
 
-     integer nrowa;
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSYMM  performs one of the matrix-matrix operations */
 
- /*     C := alpha*A*B + beta*C, */
 
- /*  or */
 
- /*     C := alpha*B*A + beta*C, */
 
- /*  where alpha and beta are scalars,  A is a symmetric matrix and  B and */
 
- /*  C are  m by n matrices. */
 
- /*  Arguments */
 
- /*  ========== */
 
- /*  SIDE   - CHARACTER*1. */
 
- /*           On entry,  SIDE  specifies whether  the  symmetric matrix  A */
 
- /*           appears on the  left or right  in the  operation as follows: */
 
- /*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C, */
 
- /*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C, */
 
- /*           Unchanged on exit. */
 
- /*  UPLO   - CHARACTER*1. */
 
- /*           On  entry,   UPLO  specifies  whether  the  upper  or  lower */
 
- /*           triangular  part  of  the  symmetric  matrix   A  is  to  be */
 
- /*           referenced as follows: */
 
- /*              UPLO = 'U' or 'u'   Only the upper triangular part of the */
 
- /*                                  symmetric matrix is to be referenced. */
 
- /*              UPLO = 'L' or 'l'   Only the lower triangular part of the */
 
- /*                                  symmetric matrix is to be referenced. */
 
- /*           Unchanged on exit. */
 
- /*  M      - INTEGER. */
 
- /*           On entry,  M  specifies the number of rows of the matrix  C. */
 
- /*           M  must be at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  N      - INTEGER. */
 
- /*           On entry, N specifies the number of columns of the matrix C. */
 
- /*           N  must be at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  ALPHA  - DOUBLE PRECISION. */
 
- /*           On entry, ALPHA specifies the scalar alpha. */
 
- /*           Unchanged on exit. */
 
- /*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */
 
- /*           m  when  SIDE = 'L' or 'l'  and is  n otherwise. */
 
- /*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of */
 
- /*           the array  A  must contain the  symmetric matrix,  such that */
 
- /*           when  UPLO = 'U' or 'u', the leading m by m upper triangular */
 
- /*           part of the array  A  must contain the upper triangular part */
 
- /*           of the  symmetric matrix and the  strictly  lower triangular */
 
- /*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l', */
 
- /*           the leading  m by m  lower triangular part  of the  array  A */
 
- /*           must  contain  the  lower triangular part  of the  symmetric */
 
- /*           matrix and the  strictly upper triangular part of  A  is not */
 
- /*           referenced. */
 
- /*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of */
 
- /*           the array  A  must contain the  symmetric matrix,  such that */
 
- /*           when  UPLO = 'U' or 'u', the leading n by n upper triangular */
 
- /*           part of the array  A  must contain the upper triangular part */
 
- /*           of the  symmetric matrix and the  strictly  lower triangular */
 
- /*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l', */
 
- /*           the leading  n by n  lower triangular part  of the  array  A */
 
- /*           must  contain  the  lower triangular part  of the  symmetric */
 
- /*           matrix and the  strictly upper triangular part of  A  is not */
 
- /*           referenced. */
 
- /*           Unchanged on exit. */
 
- /*  LDA    - INTEGER. */
 
- /*           On entry, LDA specifies the first dimension of A as declared */
 
- /*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then */
 
- /*           LDA must be at least  max( 1, m ), otherwise  LDA must be at */
 
- /*           least  max( 1, n ). */
 
- /*           Unchanged on exit. */
 
- /*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
 
- /*           Before entry, the leading  m by n part of the array  B  must */
 
- /*           contain the matrix B. */
 
- /*           Unchanged on exit. */
 
- /*  LDB    - INTEGER. */
 
- /*           On entry, LDB specifies the first dimension of B as declared */
 
- /*           in  the  calling  (sub)  program.   LDB  must  be  at  least */
 
- /*           max( 1, m ). */
 
- /*           Unchanged on exit. */
 
- /*  BETA   - DOUBLE PRECISION. */
 
- /*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is */
 
- /*           supplied as zero then C need not be set on input. */
 
- /*           Unchanged on exit. */
 
- /*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */
 
- /*           Before entry, the leading  m by n  part of the array  C must */
 
- /*           contain the matrix  C,  except when  beta  is zero, in which */
 
- /*           case C need not be set on entry. */
 
- /*           On exit, the array  C  is overwritten by the  m by n updated */
 
- /*           matrix. */
 
- /*  LDC    - INTEGER. */
 
- /*           On entry, LDC specifies the first dimension of C as declared */
 
- /*           in  the  calling  (sub)  program.   LDC  must  be  at  least */
 
- /*           max( 1, m ). */
 
- /*           Unchanged on exit. */
 
- /*  Level 3 Blas routine. */
 
- /*  -- Written on 8-February-1989. */
 
- /*     Jack Dongarra, Argonne National Laboratory. */
 
- /*     Iain Duff, AERE Harwell. */
 
- /*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
 
- /*     Sven Hammarling, Numerical Algorithms Group Ltd. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     Set NROWA as the number of rows of A. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     c_dim1 = *ldc;
 
-     c_offset = 1 + c_dim1;
 
-     c__ -= c_offset;
 
-     /* Function Body */
 
-     if (lsame_(side, "L")) {
 
- 	nrowa = *m;
 
-     } else {
 
- 	nrowa = *n;
 
-     }
 
-     upper = lsame_(uplo, "U");
 
- /*     Test the input parameters. */
 
-     info = 0;
 
-     if (! lsame_(side, "L") && ! lsame_(side, "R")) {
 
- 	info = 1;
 
-     } else if (! upper && ! lsame_(uplo, "L")) {
 
- 	info = 2;
 
-     } else if (*m < 0) {
 
- 	info = 3;
 
-     } else if (*n < 0) {
 
- 	info = 4;
 
-     } else if (*lda < max(1,nrowa)) {
 
- 	info = 7;
 
-     } else if (*ldb < max(1,*m)) {
 
- 	info = 9;
 
-     } else if (*ldc < max(1,*m)) {
 
- 	info = 12;
 
-     }
 
-     if (info != 0) {
 
- 	xerbla_("DSYMM ", &info);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {
 
- 	return 0;
 
-     }
 
- /*     And when  alpha.eq.zero. */
 
-     if (*alpha == 0.) {
 
- 	if (*beta == 0.) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    c__[i__ + j * c_dim1] = 0.;
 
- /* L10: */
 
- 		}
 
- /* L20: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Start the operations. */
 
-     if (lsame_(side, "L")) {
 
- /*        Form  C := alpha*A*B + beta*C. */
 
- 	if (upper) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    temp1 = *alpha * b[i__ + j * b_dim1];
 
- 		    temp2 = 0.;
 
- 		    i__3 = i__ - 1;
 
- 		    for (k = 1; k <= i__3; ++k) {
 
- 			c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];
 
- 			temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];
 
- /* L50: */
 
- 		    }
 
- 		    if (*beta == 0.) {
 
- 			c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] 
 
- 				+ *alpha * temp2;
 
- 		    } else {
 
- 			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] 
 
- 				+ temp1 * a[i__ + i__ * a_dim1] + *alpha * 
 
- 				temp2;
 
- 		    }
 
- /* L60: */
 
- 		}
 
- /* L70: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		for (i__ = *m; i__ >= 1; --i__) {
 
- 		    temp1 = *alpha * b[i__ + j * b_dim1];
 
- 		    temp2 = 0.;
 
- 		    i__2 = *m;
 
- 		    for (k = i__ + 1; k <= i__2; ++k) {
 
- 			c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];
 
- 			temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];
 
- /* L80: */
 
- 		    }
 
- 		    if (*beta == 0.) {
 
- 			c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] 
 
- 				+ *alpha * temp2;
 
- 		    } else {
 
- 			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] 
 
- 				+ temp1 * a[i__ + i__ * a_dim1] + *alpha * 
 
- 				temp2;
 
- 		    }
 
- /* L90: */
 
- 		}
 
- /* L100: */
 
- 	    }
 
- 	}
 
-     } else {
 
- /*        Form  C := alpha*B*A + beta*C. */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    temp1 = *alpha * a[j + j * a_dim1];
 
- 	    if (*beta == 0.) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1];
 
- /* L110: */
 
- 		}
 
- 	    } else {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + 
 
- 			    temp1 * b[i__ + j * b_dim1];
 
- /* L120: */
 
- 		}
 
- 	    }
 
- 	    i__2 = j - 1;
 
- 	    for (k = 1; k <= i__2; ++k) {
 
- 		if (upper) {
 
- 		    temp1 = *alpha * a[k + j * a_dim1];
 
- 		} else {
 
- 		    temp1 = *alpha * a[j + k * a_dim1];
 
- 		}
 
- 		i__3 = *m;
 
- 		for (i__ = 1; i__ <= i__3; ++i__) {
 
- 		    c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];
 
- /* L130: */
 
- 		}
 
- /* L140: */
 
- 	    }
 
- 	    i__2 = *n;
 
- 	    for (k = j + 1; k <= i__2; ++k) {
 
- 		if (upper) {
 
- 		    temp1 = *alpha * a[j + k * a_dim1];
 
- 		} else {
 
- 		    temp1 = *alpha * a[k + j * a_dim1];
 
- 		}
 
- 		i__3 = *m;
 
- 		for (i__ = 1; i__ <= i__3; ++i__) {
 
- 		    c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];
 
- /* L150: */
 
- 		}
 
- /* L160: */
 
- 	    }
 
- /* L170: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DSYMM . */
 
- } /* dsymm_ */
 
 
  |