| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 | /* dorml2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n, 	integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *	c__, integer *ldc, doublereal *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;    /* Local variables */    integer i__, i1, i2, i3, ic, jc, mi, ni, nq;    doublereal aii;    logical left;    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int xerbla_(char *, integer *);    logical notran;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DORML2 overwrites the general real m by n matrix C with *//*        Q * C  if SIDE = 'L' and TRANS = 'N', or *//*        Q'* C  if SIDE = 'L' and TRANS = 'T', or *//*        C * Q  if SIDE = 'R' and TRANS = 'N', or *//*        C * Q' if SIDE = 'R' and TRANS = 'T', *//*  where Q is a real orthogonal matrix defined as the product of k *//*  elementary reflectors *//*        Q = H(k) . . . H(2) H(1) *//*  as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n *//*  if SIDE = 'R'. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': apply Q or Q' from the Left *//*          = 'R': apply Q or Q' from the Right *//*  TRANS   (input) CHARACTER*1 *//*          = 'N': apply Q  (No transpose) *//*          = 'T': apply Q' (Transpose) *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. N >= 0. *//*  K       (input) INTEGER *//*          The number of elementary reflectors whose product defines *//*          the matrix Q. *//*          If SIDE = 'L', M >= K >= 0; *//*          if SIDE = 'R', N >= K >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension *//*                               (LDA,M) if SIDE = 'L', *//*                               (LDA,N) if SIDE = 'R' *//*          The i-th row must contain the vector which defines the *//*          elementary reflector H(i), for i = 1,2,...,k, as returned by *//*          DGELQF in the first k rows of its array argument A. *//*          A is modified by the routine but restored on exit. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,K). *//*  TAU     (input) DOUBLE PRECISION array, dimension (K) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DGELQF. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) *//*          On entry, the m by n matrix C. *//*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1,M). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension *//*                                   (N) if SIDE = 'L', *//*                                   (M) if SIDE = 'R' *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    *info = 0;    left = lsame_(side, "L");    notran = lsame_(trans, "N");/*     NQ is the order of Q */    if (left) {	nq = *m;    } else {	nq = *n;    }    if (! left && ! lsame_(side, "R")) {	*info = -1;    } else if (! notran && ! lsame_(trans, "T")) {	*info = -2;    } else if (*m < 0) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*k < 0 || *k > nq) {	*info = -5;    } else if (*lda < max(1,*k)) {	*info = -7;    } else if (*ldc < max(1,*m)) {	*info = -10;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DORML2", &i__1);	return 0;    }/*     Quick return if possible */    if (*m == 0 || *n == 0 || *k == 0) {	return 0;    }    if (left && notran || ! left && ! notran) {	i1 = 1;	i2 = *k;	i3 = 1;    } else {	i1 = *k;	i2 = 1;	i3 = -1;    }    if (left) {	ni = *n;	jc = 1;    } else {	mi = *m;	ic = 1;    }    i__1 = i2;    i__2 = i3;    for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {	if (left) {/*           H(i) is applied to C(i:m,1:n) */	    mi = *m - i__ + 1;	    ic = i__;	} else {/*           H(i) is applied to C(1:m,i:n) */	    ni = *n - i__ + 1;	    jc = i__;	}/*        Apply H(i) */	aii = a[i__ + i__ * a_dim1];	a[i__ + i__ * a_dim1] = 1.;	dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[		ic + jc * c_dim1], ldc, &work[1]);	a[i__ + i__ * a_dim1] = aii;/* L10: */    }    return 0;/*     End of DORML2 */} /* dorml2_ */
 |