| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 | /* dgelq2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dgelq2_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *tau, doublereal *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, k;    doublereal aii;    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *), dlarfp_(integer *, doublereal *, 	    doublereal *, integer *, doublereal *), xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGELQ2 computes an LQ factorization of a real m by n matrix A: *//*  A = L * Q. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the m by n matrix A. *//*          On exit, the elements on and below the diagonal of the array *//*          contain the m by min(m,n) lower trapezoidal matrix L (L is *//*          lower triangular if m <= n); the elements above the diagonal, *//*          with the array TAU, represent the orthogonal matrix Q as a *//*          product of elementary reflectors (see Further Details). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(k) . . . H(2) H(1), where k = min(m,n). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), *//*  and tau in TAU(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGELQ2", &i__1);	return 0;    }    k = min(*m,*n);    i__1 = k;    for (i__ = 1; i__ <= i__1; ++i__) {/*        Generate elementary reflector H(i) to annihilate A(i,i+1:n) */	i__2 = *n - i__ + 1;/* Computing MIN */	i__3 = i__ + 1;	dlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* a_dim1], lda, &tau[i__]);	if (i__ < *m) {/*           Apply H(i) to A(i+1:m,i:n) from the right */	    aii = a[i__ + i__ * a_dim1];	    a[i__ + i__ * a_dim1] = 1.;	    i__2 = *m - i__;	    i__3 = *n - i__ + 1;	    dlarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[		    i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);	    a[i__ + i__ * a_dim1] = aii;	}/* L10: */    }    return 0;/*     End of DGELQ2 */} /* dgelq2_ */
 |