| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 | 
							- /* dgetrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b12 = 1.;
 
- static doublereal c_b15 = -1.;
 
- /* Subroutine */ int dgetrf_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, integer *ipiv, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j, ipivstart, jpivstart, jp;
 
-     doublereal tmp;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
 
- , doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     integer kcols;
 
-     doublereal sfmin;
 
-     integer nstep;
 
-     extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer kahead;
 
-     extern doublereal dlamch_(char *);
 
-     extern integer idamax_(integer *, doublereal *, integer *);
 
-     extern logical disnan_(doublereal *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     integer npived;
 
-     extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *, 
 
- 	    integer *, integer *, integer *, integer *);
 
-     integer kstart, ntopiv;
 
- /*  -- LAPACK routine (version 3.X) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     May 2008 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGETRF computes an LU factorization of a general M-by-N matrix A */
 
- /*  using partial pivoting with row interchanges. */
 
- /*  The factorization has the form */
 
- /*     A = P * L * U */
 
- /*  where P is a permutation matrix, L is lower triangular with unit */
 
- /*  diagonal elements (lower trapezoidal if m > n), and U is upper */
 
- /*  triangular (upper trapezoidal if m < n). */
 
- /*  This code implements an iterative version of Sivan Toledo's recursive */
 
- /*  LU algorithm[1].  For square matrices, this iterative versions should */
 
- /*  be within a factor of two of the optimum number of memory transfers. */
 
- /*  The pattern is as follows, with the large blocks of U being updated */
 
- /*  in one call to DTRSM, and the dotted lines denoting sections that */
 
- /*  have had all pending permutations applied: */
 
- /*   1 2 3 4 5 6 7 8 */
 
- /*  +-+-+---+-------+------ */
 
- /*  | |1|   |       | */
 
- /*  |.+-+ 2 |       | */
 
- /*  | | |   |       | */
 
- /*  |.|.+-+-+   4   | */
 
- /*  | | | |1|       | */
 
- /*  | | |.+-+       | */
 
- /*  | | | | |       | */
 
- /*  |.|.|.|.+-+-+---+  8 */
 
- /*  | | | | | |1|   | */
 
- /*  | | | | |.+-+ 2 | */
 
- /*  | | | | | | |   | */
 
- /*  | | | | |.|.+-+-+ */
 
- /*  | | | | | | | |1| */
 
- /*  | | | | | | |.+-+ */
 
- /*  | | | | | | | | | */
 
- /*  |.|.|.|.|.|.|.|.+----- */
 
- /*  | | | | | | | | | */
 
- /*  The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in */
 
- /*  the binary expansion of the current column.  Each Schur update is */
 
- /*  applied as soon as the necessary portion of U is available. */
 
- /*  [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with */
 
- /*  Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997), */
 
- /*  1065-1081. http://dx.doi.org/10.1137/S0895479896297744 */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix to be factored. */
 
- /*          On exit, the factors L and U from the factorization */
 
- /*          A = P*L*U; the unit diagonal elements of L are not stored. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
 
- /*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
 
- /*          matrix was interchanged with row IPIV(i). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization */
 
- /*                has been completed, but the factor U is exactly */
 
- /*                singular, and division by zero will occur if it is used */
 
- /*                to solve a system of equations. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --ipiv;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGETRF", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*m == 0 || *n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Compute machine safe minimum */
 
-     sfmin = dlamch_("S");
 
-     nstep = min(*m,*n);
 
-     i__1 = nstep;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	kahead = j & -j;
 
- 	kstart = j + 1 - kahead;
 
- /* Computing MIN */
 
- 	i__2 = kahead, i__3 = *m - j;
 
- 	kcols = min(i__2,i__3);
 
- /*        Find pivot. */
 
- 	i__2 = *m - j + 1;
 
- 	jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
 
- 	ipiv[j] = jp;
 
- /*        Permute just this column. */
 
- 	if (jp != j) {
 
- 	    tmp = a[j + j * a_dim1];
 
- 	    a[j + j * a_dim1] = a[jp + j * a_dim1];
 
- 	    a[jp + j * a_dim1] = tmp;
 
- 	}
 
- /*        Apply pending permutations to L */
 
- 	ntopiv = 1;
 
- 	ipivstart = j;
 
- 	jpivstart = j - ntopiv;
 
- 	while(ntopiv < kahead) {
 
- 	    dlaswp_(&ntopiv, &a[jpivstart * a_dim1 + 1], lda, &ipivstart, &j, 
 
- 		    &ipiv[1], &c__1);
 
- 	    ipivstart -= ntopiv;
 
- 	    ntopiv <<= 1;
 
- 	    jpivstart -= ntopiv;
 
- 	}
 
- /*        Permute U block to match L */
 
- 	dlaswp_(&kcols, &a[(j + 1) * a_dim1 + 1], lda, &kstart, &j, &ipiv[1], 
 
- 		&c__1);
 
- /*        Factor the current column */
 
- 	if (a[j + j * a_dim1] != 0. && ! disnan_(&a[j + j * a_dim1])) {
 
- 	    if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
 
- 		i__2 = *m - j;
 
- 		d__1 = 1. / a[j + j * a_dim1];
 
- 		dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
 
- 	    } else {
 
- 		i__2 = *m - j;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
 
- 		}
 
- 	    }
 
- 	} else if (a[j + j * a_dim1] == 0. && *info == 0) {
 
- 	    *info = j;
 
- 	}
 
- /*        Solve for U block. */
 
- 	dtrsm_("Left", "Lower", "No transpose", "Unit", &kahead, &kcols, &
 
- 		c_b12, &a[kstart + kstart * a_dim1], lda, &a[kstart + (j + 1) 
 
- 		* a_dim1], lda);
 
- /*        Schur complement. */
 
- 	i__2 = *m - j;
 
- 	dgemm_("No transpose", "No transpose", &i__2, &kcols, &kahead, &c_b15, 
 
- 		 &a[j + 1 + kstart * a_dim1], lda, &a[kstart + (j + 1) * 
 
- 		a_dim1], lda, &c_b12, &a[j + 1 + (j + 1) * a_dim1], lda);
 
-     }
 
- /*     Handle pivot permutations on the way out of the recursion */
 
-     npived = nstep & -nstep;
 
-     j = nstep - npived;
 
-     while(j > 0) {
 
- 	ntopiv = j & -j;
 
- 	i__1 = j + 1;
 
- 	dlaswp_(&ntopiv, &a[(j - ntopiv + 1) * a_dim1 + 1], lda, &i__1, &
 
- 		nstep, &ipiv[1], &c__1);
 
- 	j -= ntopiv;
 
-     }
 
- /*     If short and wide, handle the rest of the columns. */
 
-     if (*m < *n) {
 
- 	i__1 = *n - *m;
 
- 	dlaswp_(&i__1, &a[(*m + kcols + 1) * a_dim1 + 1], lda, &c__1, m, &
 
- 		ipiv[1], &c__1);
 
- 	i__1 = *n - *m;
 
- 	dtrsm_("Left", "Lower", "No transpose", "Unit", m, &i__1, &c_b12, &a[
 
- 		a_offset], lda, &a[(*m + kcols + 1) * a_dim1 + 1], lda);
 
-     }
 
-     return 0;
 
- /*     End of DGETRF */
 
- } /* dgetrf_ */
 
 
  |