| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 | /* StarPU --- Runtime system for heterogeneous multicore architectures. * * Copyright (C) 2012, 2013, 2014  CNRS * * StarPU is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * StarPU is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */#include <config.h>#include <starpu.h>#include <core/perfmodel/perfmodel.h>#include "../helper.h"void func(void *descr[], void *arg){}static struct starpu_perfmodel rb_model ={	.type = STARPU_REGRESSION_BASED,	.symbol = "valid_model_regression_based"};static struct starpu_perfmodel nlrb_model ={	.type = STARPU_NL_REGRESSION_BASED,	.symbol = "valid_model_non_linear_regression_based"};#if 0static struct starpu_perfmodel hb_model ={	.type = STARPU_HISTORY_BASED,	.symbol = "valid_model_history_based"};#endifstatic struct starpu_codelet mycodelet ={	.cuda_funcs = {func},	.opencl_funcs = {func},	.cpu_funcs = {func},	.nbuffers = 1,	.modes = {STARPU_W}};static int submit(struct starpu_codelet *codelet, struct starpu_perfmodel *model){	int nloops = 123;	int loop;	starpu_data_handle_t handle;	struct starpu_perfmodel lmodel;	int ret;	int old_nsamples, new_nsamples;	struct starpu_conf conf;	unsigned archid, archtype, devid, ncore;	starpu_conf_init(&conf);	conf.sched_policy_name = "eager";	conf.calibrate = 1;	ret = starpu_init(&conf);	if (ret == -ENODEV) return STARPU_TEST_SKIPPED;	STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");	codelet->model = model;	old_nsamples = 0;	memset(&lmodel, 0, sizeof(struct starpu_perfmodel));	lmodel.type = model->type;	ret = starpu_perfmodel_load_symbol(codelet->model->symbol, &lmodel);	if (ret != 1)	{		int i, impl;		for(i = 0; i < lmodel.state->ncombs; i++)		{			int comb = lmodel.state->combs[i];			for(impl = 0; impl < lmodel.state->nimpls[comb]; impl++)				old_nsamples += lmodel.state->per_arch[comb][impl].regression.nsample;		}	}        starpu_vector_data_register(&handle, -1, (uintptr_t)NULL, 100, sizeof(int));	for (loop = 0; loop < nloops; loop++)	{		ret = starpu_task_insert(codelet, STARPU_W, handle, 0);		if (ret == -ENODEV) return STARPU_TEST_SKIPPED;		STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");	}        starpu_data_unregister(handle);	starpu_perfmodel_unload_model(&lmodel);	starpu_shutdown(); // To force dumping perf models on disk	// We need to call starpu_init again to initialise values used by perfmodels	ret = starpu_init(NULL);	STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");	ret = starpu_perfmodel_load_symbol(codelet->model->symbol, &lmodel);	if (ret == 1)	{		FPRINTF(stderr, "The performance model for the symbol <%s> could not be loaded\n", codelet->model->symbol);		starpu_shutdown();		return 1;	}	else	{		int i;		new_nsamples = 0;		for(i = 0; i < lmodel.state->ncombs; i++)		{			int comb = lmodel.state->combs[i];			int impl;			for(impl = 0; impl < lmodel.state->nimpls[comb]; impl++)			     new_nsamples += lmodel.state->per_arch[comb][impl].regression.nsample;		}	}	ret = starpu_perfmodel_unload_model(&lmodel);	starpu_shutdown();	if (ret == 1)	{		FPRINTF(stderr, "The performance model for the symbol <%s> could not be UNloaded\n", codelet->model->symbol);		return 1;	}	if (old_nsamples + nloops == new_nsamples)	{		FPRINTF(stderr, "Sampling for <%s> OK %d + %d == %d\n", codelet->model->symbol, old_nsamples, nloops, new_nsamples);		return EXIT_SUCCESS;	}	else	{		FPRINTF(stderr, "Sampling for <%s> failed %d + %d != %d\n", codelet->model->symbol, old_nsamples, nloops, new_nsamples);		return EXIT_FAILURE;	}}int main(int argc, char **argv){	int ret;	/* Use a linear regression model */	ret = submit(&mycodelet, &rb_model);	if (ret) return ret;	/* Use a non-linear regression model */	ret = submit(&mycodelet, &nlrb_model);	if (ret) return ret;#ifdef STARPU_DEVEL#  warning history based model cannot be validated with regression.nsample#endif#if 0	/* Use a history model */	ret = submit(&mycodelet, &hb_model);	if (ret) return ret;#endif	return EXIT_SUCCESS;}
 |