dot_product.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2015, 2017 Université de Bordeaux
  4. * Copyright (C) 2012 INRIA
  5. * Copyright (C) 2016, 2017 CNRS
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*
  19. * This computes the dot product of a big vector, using data reduction to
  20. * optimize the dot reduction.
  21. */
  22. #include <starpu.h>
  23. #include <assert.h>
  24. #include <math.h>
  25. #include <reductions/dot_product.h>
  26. #ifdef STARPU_USE_CUDA
  27. #include <cuda.h>
  28. #include <starpu_cublas_v2.h>
  29. #endif
  30. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  31. static float *_x;
  32. static float *_y;
  33. static starpu_data_handle_t *_x_handles;
  34. static starpu_data_handle_t *_y_handles;
  35. #ifdef STARPU_USE_OPENCL
  36. static struct starpu_opencl_program _opencl_program;
  37. #endif
  38. #ifdef STARPU_QUICK_CHECK
  39. static unsigned _nblocks = 512;
  40. #else
  41. static unsigned _nblocks = 4096;
  42. #endif
  43. static unsigned _entries_per_block = 1024;
  44. static DOT_TYPE _dot = 0.0f;
  45. static starpu_data_handle_t _dot_handle;
  46. #ifdef STARPU_USE_CUDA
  47. static int cublas_version;
  48. #endif
  49. static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
  50. {
  51. enum starpu_worker_archtype type = starpu_worker_get_type(workerid);
  52. if (type == STARPU_CPU_WORKER || type == STARPU_OPENCL_WORKER || type == STARPU_MIC_WORKER || type == STARPU_SCC_WORKER)
  53. return 1;
  54. #ifdef STARPU_USE_CUDA
  55. #ifdef STARPU_SIMGRID
  56. /* We don't know, let's assume it can */
  57. return 1;
  58. #else
  59. /* Cuda device */
  60. const struct cudaDeviceProp *props;
  61. props = starpu_cuda_get_device_properties(workerid);
  62. if (props->major >= 2 || props->minor >= 3)
  63. /* At least compute capability 1.3, supports doubles */
  64. return 1;
  65. #endif
  66. #endif
  67. /* Old card, does not support doubles */
  68. return 0;
  69. }
  70. /*
  71. * Codelet to create a neutral element
  72. */
  73. void init_cpu_func(void *descr[], void *cl_arg)
  74. {
  75. DOT_TYPE *dot = (DOT_TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  76. *dot = 0.0f;
  77. }
  78. #ifdef STARPU_USE_CUDA
  79. void init_cuda_func(void *descr[], void *cl_arg)
  80. {
  81. DOT_TYPE *dot = (DOT_TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  82. cudaMemsetAsync(dot, 0, sizeof(DOT_TYPE), starpu_cuda_get_local_stream());
  83. }
  84. #endif
  85. #ifdef STARPU_USE_OPENCL
  86. void init_opencl_func(void *buffers[], void *args)
  87. {
  88. cl_int err;
  89. cl_command_queue queue;
  90. cl_mem dot = (cl_mem) STARPU_VARIABLE_GET_PTR(buffers[0]);
  91. starpu_opencl_get_current_queue(&queue);
  92. DOT_TYPE zero = (DOT_TYPE) 0.0;
  93. err = clEnqueueWriteBuffer(queue,
  94. dot,
  95. CL_TRUE,
  96. 0,
  97. sizeof(DOT_TYPE),
  98. &zero,
  99. 0,
  100. NULL,
  101. NULL);
  102. if (err != CL_SUCCESS)
  103. STARPU_OPENCL_REPORT_ERROR(err);
  104. }
  105. #endif
  106. static struct starpu_codelet init_codelet =
  107. {
  108. .can_execute = can_execute,
  109. .cpu_funcs = {init_cpu_func},
  110. .cpu_funcs_name = {"init_cpu_func"},
  111. #ifdef STARPU_USE_CUDA
  112. .cuda_funcs = {init_cuda_func},
  113. .cuda_flags = {STARPU_CUDA_ASYNC},
  114. #endif
  115. #ifdef STARPU_USE_OPENCL
  116. .opencl_funcs = {init_opencl_func},
  117. #endif
  118. .modes = {STARPU_W},
  119. .nbuffers = 1,
  120. .name = "init",
  121. };
  122. /*
  123. * Codelet to perform the reduction of two elements
  124. */
  125. void redux_cpu_func(void *descr[], void *cl_arg)
  126. {
  127. DOT_TYPE *dota = (DOT_TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  128. DOT_TYPE *dotb = (DOT_TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
  129. *dota = *dota + *dotb;
  130. }
  131. #ifdef STARPU_USE_CUDA
  132. extern void redux_cuda_func(void *descr[], void *_args);
  133. #endif
  134. #ifdef STARPU_USE_OPENCL
  135. void redux_opencl_func(void *buffers[], void *args)
  136. {
  137. int id, devid;
  138. cl_int err;
  139. cl_kernel kernel;
  140. cl_command_queue queue;
  141. cl_mem dota = (cl_mem) STARPU_VARIABLE_GET_PTR(buffers[0]);
  142. cl_mem dotb = (cl_mem) STARPU_VARIABLE_GET_PTR(buffers[1]);
  143. id = starpu_worker_get_id_check();
  144. devid = starpu_worker_get_devid(id);
  145. err = starpu_opencl_load_kernel(&kernel, &queue, &_opencl_program, "_redux_opencl", devid);
  146. if (err != CL_SUCCESS)
  147. STARPU_OPENCL_REPORT_ERROR(err);
  148. err = clSetKernelArg(kernel, 0, sizeof(dota), &dota);
  149. err|= clSetKernelArg(kernel, 1, sizeof(dotb), &dotb);
  150. if (err != CL_SUCCESS)
  151. STARPU_OPENCL_REPORT_ERROR(err);
  152. {
  153. size_t global=1;
  154. size_t local;
  155. size_t s;
  156. cl_device_id device;
  157. starpu_opencl_get_device(devid, &device);
  158. err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, &s);
  159. if (err != CL_SUCCESS)
  160. STARPU_OPENCL_REPORT_ERROR(err);
  161. if (local > global)
  162. local=global;
  163. err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
  164. if (err != CL_SUCCESS)
  165. STARPU_OPENCL_REPORT_ERROR(err);
  166. }
  167. starpu_opencl_release_kernel(kernel);
  168. }
  169. #endif
  170. static struct starpu_codelet redux_codelet =
  171. {
  172. .can_execute = can_execute,
  173. .cpu_funcs = {redux_cpu_func},
  174. .cpu_funcs_name = {"redux_cpu_func"},
  175. #ifdef STARPU_USE_CUDA
  176. .cuda_funcs = {redux_cuda_func},
  177. .cuda_flags = {STARPU_CUDA_ASYNC},
  178. #endif
  179. #ifdef STARPU_USE_OPENCL
  180. .opencl_funcs = {redux_opencl_func},
  181. .opencl_flags = {STARPU_OPENCL_ASYNC},
  182. #endif
  183. .modes = {STARPU_RW, STARPU_R},
  184. .nbuffers = 2,
  185. .name = "redux"
  186. };
  187. /*
  188. * Dot product codelet
  189. */
  190. void dot_cpu_func(void *descr[], void *cl_arg)
  191. {
  192. float *local_x = (float *)STARPU_VECTOR_GET_PTR(descr[0]);
  193. float *local_y = (float *)STARPU_VECTOR_GET_PTR(descr[1]);
  194. DOT_TYPE *dot = (DOT_TYPE *)STARPU_VARIABLE_GET_PTR(descr[2]);
  195. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  196. DOT_TYPE local_dot = 0.0;
  197. unsigned i;
  198. for (i = 0; i < n; i++)
  199. {
  200. local_dot += (DOT_TYPE)local_x[i]*(DOT_TYPE)local_y[i];
  201. }
  202. *dot = *dot + local_dot;
  203. }
  204. #ifdef STARPU_USE_CUDA
  205. void dot_cuda_func(void *descr[], void *cl_arg)
  206. {
  207. DOT_TYPE current_dot;
  208. float local_dot;
  209. float *local_x = (float *)STARPU_VECTOR_GET_PTR(descr[0]);
  210. float *local_y = (float *)STARPU_VECTOR_GET_PTR(descr[1]);
  211. DOT_TYPE *dot = (DOT_TYPE *)STARPU_VARIABLE_GET_PTR(descr[2]);
  212. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  213. cudaMemcpyAsync(&current_dot, dot, sizeof(DOT_TYPE), cudaMemcpyDeviceToHost, starpu_cuda_get_local_stream());
  214. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  215. cublasStatus_t status = cublasSdot(starpu_cublas_get_local_handle(), n, local_x, 1, local_y, 1, &local_dot);
  216. if (status != CUBLAS_STATUS_SUCCESS)
  217. STARPU_CUBLAS_REPORT_ERROR(status);
  218. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  219. /* FPRINTF(stderr, "current_dot %f local dot %f -> %f\n", current_dot, local_dot, current_dot + local_dot); */
  220. current_dot += local_dot;
  221. cudaMemcpyAsync(dot, &current_dot, sizeof(DOT_TYPE), cudaMemcpyHostToDevice, starpu_cuda_get_local_stream());
  222. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  223. }
  224. #endif
  225. #ifdef STARPU_USE_OPENCL
  226. void dot_opencl_func(void *buffers[], void *args)
  227. {
  228. int id, devid;
  229. cl_int err;
  230. cl_kernel kernel;
  231. cl_command_queue queue;
  232. cl_mem x = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
  233. cl_mem y = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[1]);
  234. cl_mem dot = (cl_mem) STARPU_VARIABLE_GET_PTR(buffers[2]);
  235. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  236. id = starpu_worker_get_id_check();
  237. devid = starpu_worker_get_devid(id);
  238. err = starpu_opencl_load_kernel(&kernel, &queue, &_opencl_program, "_dot_opencl", devid);
  239. if (err != CL_SUCCESS)
  240. STARPU_OPENCL_REPORT_ERROR(err);
  241. err = clSetKernelArg(kernel, 0, sizeof(x), &x);
  242. err|= clSetKernelArg(kernel, 1, sizeof(y), &y);
  243. err|= clSetKernelArg(kernel, 2, sizeof(dot), &dot);
  244. err|= clSetKernelArg(kernel, 3, sizeof(n), &n);
  245. if (err != CL_SUCCESS)
  246. STARPU_OPENCL_REPORT_ERROR(err);
  247. {
  248. size_t global=1;
  249. size_t local;
  250. size_t s;
  251. cl_device_id device;
  252. starpu_opencl_get_device(devid, &device);
  253. err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(local), &local, &s);
  254. if (err != CL_SUCCESS)
  255. STARPU_OPENCL_REPORT_ERROR(err);
  256. if (local > global)
  257. local=global;
  258. err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
  259. if (err != CL_SUCCESS)
  260. STARPU_OPENCL_REPORT_ERROR(err);
  261. }
  262. starpu_opencl_release_kernel(kernel);
  263. }
  264. #endif
  265. static struct starpu_codelet dot_codelet =
  266. {
  267. .can_execute = can_execute,
  268. .cpu_funcs = {dot_cpu_func},
  269. .cpu_funcs_name = {"dot_cpu_func"},
  270. #ifdef STARPU_USE_CUDA
  271. .cuda_funcs = {dot_cuda_func},
  272. #endif
  273. #ifdef STARPU_USE_OPENCL
  274. .opencl_funcs = {dot_opencl_func},
  275. .opencl_flags = {STARPU_OPENCL_ASYNC},
  276. #endif
  277. .nbuffers = 3,
  278. .modes = {STARPU_R, STARPU_R, STARPU_REDUX},
  279. .name = "dot"
  280. };
  281. /*
  282. * Tasks initialization
  283. */
  284. int main(int argc, char **argv)
  285. {
  286. int ret;
  287. /* Not supported yet */
  288. if (starpu_get_env_number_default("STARPU_GLOBAL_ARBITER", 0) > 0)
  289. return 77;
  290. ret = starpu_init(NULL);
  291. if (ret == -ENODEV)
  292. return 77;
  293. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  294. #ifdef STARPU_USE_OPENCL
  295. ret = starpu_opencl_load_opencl_from_file("examples/reductions/dot_product_opencl_kernels.cl",
  296. &_opencl_program, NULL);
  297. STARPU_CHECK_RETURN_VALUE(ret, "starpu_opencl_load_opencl_from_file");
  298. #endif
  299. #ifdef STARPU_USE_CUDA
  300. cublasHandle_t handle;
  301. cublasCreate(&handle);
  302. cublasGetVersion(handle, &cublas_version);
  303. cublasDestroy(handle);
  304. if (cublas_version >= 7050)
  305. starpu_cublas_init();
  306. else
  307. /* Disable the sdot cublas kernel, it is bogus with a
  308. * non-blocking stream (Nvidia bugid 1669886) */
  309. dot_codelet.cuda_funcs[0] = NULL;
  310. #endif
  311. unsigned long nelems = _nblocks*_entries_per_block;
  312. size_t size = nelems*sizeof(float);
  313. _x = (float *) malloc(size);
  314. _y = (float *) malloc(size);
  315. _x_handles = (starpu_data_handle_t *) calloc(_nblocks, sizeof(starpu_data_handle_t));
  316. _y_handles = (starpu_data_handle_t *) calloc(_nblocks, sizeof(starpu_data_handle_t));
  317. assert(_x && _y);
  318. starpu_srand48(0);
  319. DOT_TYPE reference_dot = 0.0;
  320. unsigned long i;
  321. for (i = 0; i < nelems; i++)
  322. {
  323. _x[i] = (float)starpu_drand48();
  324. _y[i] = (float)starpu_drand48();
  325. reference_dot += (DOT_TYPE)_x[i]*(DOT_TYPE)_y[i];
  326. }
  327. unsigned block;
  328. for (block = 0; block < _nblocks; block++)
  329. {
  330. starpu_vector_data_register(&_x_handles[block], STARPU_MAIN_RAM,
  331. (uintptr_t)&_x[_entries_per_block*block], _entries_per_block, sizeof(float));
  332. starpu_vector_data_register(&_y_handles[block], STARPU_MAIN_RAM,
  333. (uintptr_t)&_y[_entries_per_block*block], _entries_per_block, sizeof(float));
  334. }
  335. starpu_variable_data_register(&_dot_handle, STARPU_MAIN_RAM, (uintptr_t)&_dot, sizeof(DOT_TYPE));
  336. /*
  337. * Compute dot product with StarPU
  338. */
  339. starpu_data_set_reduction_methods(_dot_handle, &redux_codelet, &init_codelet);
  340. for (block = 0; block < _nblocks; block++)
  341. {
  342. struct starpu_task *task = starpu_task_create();
  343. task->cl = &dot_codelet;
  344. task->destroy = 1;
  345. task->handles[0] = _x_handles[block];
  346. task->handles[1] = _y_handles[block];
  347. task->handles[2] = _dot_handle;
  348. ret = starpu_task_submit(task);
  349. if (ret == -ENODEV) goto enodev;
  350. STARPU_ASSERT(!ret);
  351. }
  352. for (block = 0; block < _nblocks; block++)
  353. {
  354. starpu_data_unregister(_x_handles[block]);
  355. starpu_data_unregister(_y_handles[block]);
  356. }
  357. starpu_data_unregister(_dot_handle);
  358. FPRINTF(stderr, "Reference : %e vs. %e (Delta %e)\n", reference_dot, _dot, reference_dot - _dot);
  359. #ifdef STARPU_USE_CUDA
  360. if (cublas_version >= 7050)
  361. starpu_cublas_shutdown();
  362. #endif
  363. #ifdef STARPU_USE_OPENCL
  364. ret = starpu_opencl_unload_opencl(&_opencl_program);
  365. STARPU_CHECK_RETURN_VALUE(ret, "starpu_opencl_unload_opencl");
  366. #endif
  367. starpu_shutdown();
  368. free(_x);
  369. free(_y);
  370. free(_x_handles);
  371. free(_y_handles);
  372. if (fabs(reference_dot - _dot) < reference_dot * 1e-6)
  373. return EXIT_SUCCESS;
  374. else
  375. {
  376. FPRINTF(stderr, "ERROR: fabs(%e - %e) >= %e * 1e-6\n", reference_dot, _dot, reference_dot);
  377. return EXIT_FAILURE;
  378. }
  379. enodev:
  380. FPRINTF(stderr, "WARNING: No one can execute this task\n");
  381. /* yes, we do not perform the computation but we did detect that no one
  382. * could perform the kernel, so this is not an error from StarPU */
  383. return 77;
  384. }