dw_spmv.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. /*
  2. * StarPU
  3. * Copyright (C) Université Bordeaux 1, CNRS 2008-2011 (see AUTHORS file)
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * Conjugate gradients for Sparse matrices
  18. */
  19. #include "dw_spmv.h"
  20. #ifdef STARPU_USE_CUDA
  21. extern void spmv_kernel_cuda(void *descr[], void *args);
  22. #endif
  23. struct timeval start;
  24. struct timeval end;
  25. #ifdef STARPU_USE_OPENCL
  26. #include "starpu_opencl.h"
  27. struct starpu_opencl_program opencl_codelet;
  28. void spmv_kernel_opencl(void *descr[], void *args)
  29. {
  30. cl_kernel kernel;
  31. cl_command_queue queue;
  32. cl_event event;
  33. int id, devid, err, n;
  34. uint32_t nnz = STARPU_CSR_GET_NNZ(descr[0]);
  35. uint32_t nrow = STARPU_CSR_GET_NROW(descr[0]);
  36. float *nzval = (float *)STARPU_CSR_GET_NZVAL(descr[0]);
  37. uint32_t *colind = STARPU_CSR_GET_COLIND(descr[0]);
  38. uint32_t *rowptr = STARPU_CSR_GET_ROWPTR(descr[0]);
  39. uint32_t firstentry = STARPU_CSR_GET_FIRSTENTRY(descr[0]);
  40. float *vecin = (float *)STARPU_VECTOR_GET_PTR(descr[1]);
  41. uint32_t nx_in = STARPU_VECTOR_GET_NX(descr[1]);
  42. float *vecout = (float *)STARPU_VECTOR_GET_PTR(descr[2]);
  43. uint32_t nx_out = STARPU_VECTOR_GET_NX(descr[2]);
  44. id = starpu_worker_get_id();
  45. devid = starpu_worker_get_devid(id);
  46. err = starpu_opencl_load_kernel(&kernel, &queue, &opencl_codelet, "spvm", devid);
  47. if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
  48. err = 0;
  49. n=0;
  50. err = clSetKernelArg(kernel, n++, sizeof(uint32_t), &nnz);
  51. err = clSetKernelArg(kernel, n++, sizeof(uint32_t), &nrow);
  52. err = clSetKernelArg(kernel, n++, sizeof(cl_mem), &nzval);
  53. err = clSetKernelArg(kernel, n++, sizeof(cl_mem), &colind);
  54. err = clSetKernelArg(kernel, n++, sizeof(cl_mem), &rowptr);
  55. err = clSetKernelArg(kernel, n++, sizeof(uint32_t), &firstentry);
  56. err = clSetKernelArg(kernel, n++, sizeof(cl_mem), &vecin);
  57. err = clSetKernelArg(kernel, n++, sizeof(uint32_t), &nx_in);
  58. err = clSetKernelArg(kernel, n++, sizeof(cl_mem), &vecout);
  59. err = clSetKernelArg(kernel, n++, sizeof(uint32_t), &nx_out);
  60. if (err) STARPU_OPENCL_REPORT_ERROR(err);
  61. {
  62. size_t global=1024;
  63. err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, NULL, 0, NULL, &event);
  64. if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);
  65. }
  66. clFinish(queue);
  67. starpu_opencl_collect_stats(event);
  68. clReleaseEvent(event);
  69. starpu_opencl_release_kernel(kernel);
  70. }
  71. #endif
  72. unsigned nblocks = 2;
  73. uint32_t size = 4194304;
  74. starpu_data_handle sparse_matrix;
  75. starpu_data_handle vector_in, vector_out;
  76. float *sparse_matrix_nzval;
  77. uint32_t *sparse_matrix_colind;
  78. uint32_t *sparse_matrix_rowptr;
  79. float *vector_in_ptr;
  80. float *vector_out_ptr;
  81. static void parse_args(int argc, char **argv)
  82. {
  83. int i;
  84. for (i = 1; i < argc; i++) {
  85. if (strcmp(argv[i], "-size") == 0) {
  86. char *argptr;
  87. size = strtol(argv[++i], &argptr, 10);
  88. }
  89. if (strcmp(argv[i], "-nblocks") == 0) {
  90. char *argptr;
  91. nblocks = strtol(argv[++i], &argptr, 10);
  92. }
  93. }
  94. }
  95. static void cpu_spmv(void *descr[], __attribute__((unused)) void *arg)
  96. {
  97. float *nzval = (float *)STARPU_CSR_GET_NZVAL(descr[0]);
  98. uint32_t *colind = STARPU_CSR_GET_COLIND(descr[0]);
  99. uint32_t *rowptr = STARPU_CSR_GET_ROWPTR(descr[0]);
  100. float *vecin = (float *)STARPU_VECTOR_GET_PTR(descr[1]);
  101. float *vecout = (float *)STARPU_VECTOR_GET_PTR(descr[2]);
  102. uint32_t firstelem = STARPU_CSR_GET_FIRSTENTRY(descr[0]);
  103. uint32_t nnz;
  104. uint32_t nrow;
  105. nnz = STARPU_CSR_GET_NNZ(descr[0]);
  106. nrow = STARPU_CSR_GET_NROW(descr[0]);
  107. //STARPU_ASSERT(nrow == STARPU_VECTOR_GET_NX(descr[1]));
  108. STARPU_ASSERT(nrow == STARPU_VECTOR_GET_NX(descr[2]));
  109. unsigned row;
  110. for (row = 0; row < nrow; row++)
  111. {
  112. float tmp = 0.0f;
  113. unsigned index;
  114. unsigned firstindex = rowptr[row] - firstelem;
  115. unsigned lastindex = rowptr[row+1] - firstelem;
  116. for (index = firstindex; index < lastindex; index++)
  117. {
  118. unsigned col;
  119. col = colind[index];
  120. tmp += nzval[index]*vecin[col];
  121. }
  122. vecout[row] = tmp;
  123. }
  124. }
  125. static void create_data(void)
  126. {
  127. /* we need a sparse symetric (definite positive ?) matrix and a "dense" vector */
  128. /* example of 3-band matrix */
  129. float *nzval;
  130. uint32_t nnz;
  131. uint32_t *colind;
  132. uint32_t *rowptr;
  133. nnz = 3*size-2;
  134. nzval = malloc(nnz*sizeof(float));
  135. colind = malloc(nnz*sizeof(uint32_t));
  136. rowptr = malloc((size+1)*sizeof(uint32_t));
  137. assert(nzval);
  138. assert(colind);
  139. assert(rowptr);
  140. /* fill the matrix */
  141. unsigned row;
  142. unsigned pos = 0;
  143. for (row = 0; row < size; row++)
  144. {
  145. rowptr[row] = pos;
  146. if (row > 0) {
  147. nzval[pos] = 1.0f;
  148. colind[pos] = row-1;
  149. pos++;
  150. }
  151. nzval[pos] = 5.0f;
  152. colind[pos] = row;
  153. pos++;
  154. if (row < size - 1) {
  155. nzval[pos] = 1.0f;
  156. colind[pos] = row+1;
  157. pos++;
  158. }
  159. }
  160. STARPU_ASSERT(pos == nnz);
  161. rowptr[size] = nnz;
  162. starpu_csr_data_register(&sparse_matrix, 0, nnz, size, (uintptr_t)nzval, colind, rowptr, 0, sizeof(float));
  163. sparse_matrix_nzval = nzval;
  164. sparse_matrix_colind = colind;
  165. sparse_matrix_rowptr = rowptr;
  166. /* initiate the 2 vectors */
  167. float *invec, *outvec;
  168. invec = malloc(size*sizeof(float));
  169. assert(invec);
  170. outvec = malloc(size*sizeof(float));
  171. assert(outvec);
  172. /* fill those */
  173. unsigned ind;
  174. for (ind = 0; ind < size; ind++)
  175. {
  176. invec[ind] = 2.0f;
  177. outvec[ind] = 0.0f;
  178. }
  179. starpu_vector_data_register(&vector_in, 0, (uintptr_t)invec, size, sizeof(float));
  180. starpu_vector_data_register(&vector_out, 0, (uintptr_t)outvec, size, sizeof(float));
  181. vector_in_ptr = invec;
  182. vector_out_ptr = outvec;
  183. }
  184. void call_spmv_codelet_filters(void)
  185. {
  186. /* partition the data along a block distribution */
  187. struct starpu_data_filter csr_f, vector_f;
  188. csr_f.filter_func = starpu_vertical_block_filter_func_csr;
  189. csr_f.nchildren = nblocks;
  190. csr_f.get_nchildren = NULL;
  191. /* the children also use a csr interface */
  192. csr_f.get_child_ops = NULL;
  193. vector_f.filter_func = starpu_block_filter_func_vector;
  194. vector_f.nchildren = nblocks;
  195. vector_f.get_nchildren = NULL;
  196. vector_f.get_child_ops = NULL;
  197. starpu_data_partition(sparse_matrix, &csr_f);
  198. starpu_data_partition(vector_out, &vector_f);
  199. #ifdef STARPU_USE_OPENCL
  200. {
  201. int ret = starpu_opencl_load_opencl_from_file("examples/spmv/spmv_opencl.cl", &opencl_codelet);
  202. if (ret)
  203. {
  204. fprintf(stderr, "Failed to compile OpenCL codelet\n");
  205. exit(ret);
  206. }
  207. }
  208. #endif
  209. starpu_codelet cl;
  210. memset(&cl, 0, sizeof(starpu_codelet));
  211. cl.where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL;
  212. cl.cpu_func = cpu_spmv;
  213. #ifdef STARPU_USE_CUDA
  214. cl.cuda_func = spmv_kernel_cuda;
  215. #endif
  216. #ifdef STARPU_USE_OPENCL
  217. cl.opencl_func = spmv_kernel_opencl;
  218. #endif
  219. cl.nbuffers = 3;
  220. cl.model = NULL;
  221. gettimeofday(&start, NULL);
  222. unsigned part;
  223. for (part = 0; part < nblocks; part++)
  224. {
  225. struct starpu_task *task = starpu_task_create();
  226. int ret;
  227. task->callback_func = NULL;
  228. task->cl = &cl;
  229. task->cl_arg = NULL;
  230. task->buffers[0].handle = starpu_data_get_sub_data(sparse_matrix, 1, part);
  231. task->buffers[0].mode = STARPU_R;
  232. task->buffers[1].handle = vector_in;
  233. task->buffers[1].mode = STARPU_R;
  234. task->buffers[2].handle = starpu_data_get_sub_data(vector_out, 1, part);
  235. task->buffers[2].mode = STARPU_W;
  236. ret = starpu_task_submit(task);
  237. if (STARPU_UNLIKELY(ret == -ENODEV))
  238. {
  239. fprintf(stderr, "No worker may execute this task\n");
  240. exit(0);
  241. }
  242. }
  243. starpu_task_wait_for_all();
  244. gettimeofday(&end, NULL);
  245. starpu_data_unpartition(sparse_matrix, 0);
  246. starpu_data_unpartition(vector_out, 0);
  247. }
  248. static void print_results(void)
  249. {
  250. unsigned row;
  251. for (row = 0; row < STARPU_MIN(size, 16); row++)
  252. {
  253. printf("%2.2f\t%2.2f\n", vector_in_ptr[row], vector_out_ptr[row]);
  254. }
  255. }
  256. int main(__attribute__ ((unused)) int argc,
  257. __attribute__ ((unused)) char **argv)
  258. {
  259. parse_args(argc, argv);
  260. /* start the runtime */
  261. starpu_init(NULL);
  262. /* create the sparse input matrix */
  263. create_data();
  264. /* create a new codelet that will perform a SpMV on it */
  265. call_spmv_codelet_filters();
  266. starpu_shutdown();
  267. print_results();
  268. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  269. fprintf(stderr, "Computation took (in ms)\n");
  270. printf("%2.2f\n", timing/1000);
  271. return 0;
  272. }