| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 | 
							- /* StarPU --- Runtime system for heterogeneous multicore architectures.
 
-  *
 
-  * Copyright (C) 2010-2011, 2013  Université de Bordeaux 1
 
-  * Copyright (C) 2010  Mehdi Juhoor <mjuhoor@gmail.com>
 
-  * Copyright (C) 2010, 2011, 2012, 2013  Centre National de la Recherche Scientifique
 
-  *
 
-  * StarPU is free software; you can redistribute it and/or modify
 
-  * it under the terms of the GNU Lesser General Public License as published by
 
-  * the Free Software Foundation; either version 2.1 of the License, or (at
 
-  * your option) any later version.
 
-  *
 
-  * StarPU is distributed in the hope that it will be useful, but
 
-  * WITHOUT ANY WARRANTY; without even the implied warranty of
 
-  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
-  *
 
-  * See the GNU Lesser General Public License in COPYING.LGPL for more details.
 
-  */
 
- /*
 
-  * This example shows a simple implementation of a blocked matrix
 
-  * multiplication. Note that this is NOT intended to be an efficient
 
-  * implementation of sgemm! In this example, we show:
 
-  *  - how to declare dense matrices (starpu_matrix_data_register)
 
-  *  - how to manipulate matrices within codelets (eg. descr[0].blas.ld)
 
-  *  - how to use filters to partition the matrices into blocks
 
-  *    (starpu_data_partition and starpu_data_map_filters)
 
-  *  - how to unpartition data (starpu_data_unpartition) and how to stop
 
-  *    monitoring data (starpu_data_unregister)
 
-  *  - how to manipulate subsets of data (starpu_data_get_sub_data)
 
-  *  - how to construct an autocalibrated performance model (starpu_perfmodel)
 
-  *  - how to submit asynchronous tasks
 
-  */
 
- #include <string.h>
 
- #include <math.h>
 
- #include <sys/types.h>
 
- #include <signal.h>
 
- #include <starpu.h>
 
- static float *A, *B, *C;
 
- static starpu_data_handle_t A_handle, B_handle, C_handle;
 
- static unsigned nslicesx = 4;
 
- static unsigned nslicesy = 4;
 
- static unsigned xdim = 1024;
 
- static unsigned ydim = 1024;
 
- static unsigned zdim = 512;
 
- /*
 
-  * That program should compute C = A * B 
 
-  * 
 
-  *   A of size (z,y)
 
-  *   B of size (x,z)
 
-  *   C of size (x,y)
 
-               |---------------|
 
-             z |       B       |
 
-               |---------------|
 
-        z              x
 
-      |----|   |---------------|
 
-      |    |   |               |
 
-      |    |   |               |
 
-      | A  | y |       C       |
 
-      |    |   |               |
 
-      |    |   |               |
 
-      |----|   |---------------|
 
-  */
 
- /*
 
-  * The codelet is passed 3 matrices, the "descr" union-type field gives a
 
-  * description of the layout of those 3 matrices in the local memory (ie. RAM
 
-  * in the case of CPU, GPU frame buffer in the case of GPU etc.). Since we have
 
-  * registered data with the "matrix" data interface, we use the matrix macros.
 
-  */
 
- void cpu_mult(void *descr[], STARPU_ATTRIBUTE_UNUSED  void *arg)
 
- {
 
- 	float *subA, *subB, *subC;
 
- 	uint32_t nxC, nyC, nyA;
 
- 	uint32_t ldA, ldB, ldC;
 
- 	/* .blas.ptr gives a pointer to the first element of the local copy */
 
- 	subA = (float *)STARPU_MATRIX_GET_PTR(descr[0]);
 
- 	subB = (float *)STARPU_MATRIX_GET_PTR(descr[1]);
 
- 	subC = (float *)STARPU_MATRIX_GET_PTR(descr[2]);
 
- 	/* .blas.nx is the number of rows (consecutive elements) and .blas.ny
 
- 	 * is the number of lines that are separated by .blas.ld elements (ld
 
- 	 * stands for leading dimension).
 
- 	 * NB: in case some filters were used, the leading dimension is not
 
- 	 * guaranteed to be the same in main memory (on the original matrix)
 
- 	 * and on the accelerator! */
 
- 	nxC = STARPU_MATRIX_GET_NX(descr[2]);
 
- 	nyC = STARPU_MATRIX_GET_NY(descr[2]);
 
- 	nyA = STARPU_MATRIX_GET_NY(descr[0]);
 
- 	ldA = STARPU_MATRIX_GET_LD(descr[0]);
 
- 	ldB = STARPU_MATRIX_GET_LD(descr[1]);
 
- 	ldC = STARPU_MATRIX_GET_LD(descr[2]);
 
- 	/* we assume a FORTRAN-ordering! */
 
- 	unsigned i,j,k;
 
- 	for (i = 0; i < nyC; i++)
 
- 	{
 
- 		for (j = 0; j < nxC; j++)
 
- 		{
 
- 			float sum = 0.0;
 
- 			for (k = 0; k < nyA; k++)
 
- 			{
 
- 				sum += subA[j+k*ldA]*subB[k+i*ldB];
 
- 			}
 
- 			subC[j + i*ldC] = sum;
 
- 		}
 
- 	}
 
- }
 
- static void init_problem_data(void)
 
- {
 
- 	unsigned i,j;
 
- 	/* we initialize matrices A, B and C in the usual way */
 
- 	A = (float *) malloc(zdim*ydim*sizeof(float));
 
- 	B = (float *) malloc(xdim*zdim*sizeof(float));
 
- 	C = (float *) malloc(xdim*ydim*sizeof(float));
 
- 	/* fill the A and B matrices */
 
- 	srand(2009);
 
- 	for (j=0; j < ydim; j++)
 
- 	{
 
- 		for (i=0; i < zdim; i++)
 
- 		{
 
- 			A[j+i*ydim] = (float)(starpu_drand48());
 
- 		}
 
- 	}
 
- 	for (j=0; j < zdim; j++)
 
- 	{
 
- 		for (i=0; i < xdim; i++)
 
- 		{
 
- 			B[j+i*zdim] = (float)(starpu_drand48());
 
- 		}
 
- 	}
 
- 	for (j=0; j < ydim; j++)
 
- 	{
 
- 		for (i=0; i < xdim; i++)
 
- 		{
 
- 			C[j+i*ydim] = (float)(0);
 
- 		}
 
- 	}
 
- }
 
- static void partition_mult_data(void)
 
- {
 
- 	/* note that we assume a FORTRAN ordering here! */
 
- 	/* The BLAS data interface is described by 4 parameters: 
 
- 	 *  - the location of the first element of the matrix to monitor (3rd
 
- 	 *    argument)
 
- 	 *  - the number of elements between columns, aka leading dimension
 
- 	 *    (4th arg)
 
- 	 *  - the number of (contiguous) elements per column, ie. contiguous
 
- 	 *  elements (5th arg)
 
- 	 *  - the number of columns (6th arg)
 
- 	 * The first elements is a pointer to the data_handle that will be
 
- 	 * associated to the matrix, and the second elements gives the memory
 
- 	 * node in which resides the matrix: 0 means that the 3rd argument is
 
- 	 * an adress in main memory.
 
- 	 */
 
- 	starpu_matrix_data_register(&A_handle, STARPU_MAIN_RAM, (uintptr_t)A, 
 
- 		ydim, ydim, zdim, sizeof(float));
 
- 	starpu_matrix_data_register(&B_handle, STARPU_MAIN_RAM, (uintptr_t)B, 
 
- 		zdim, zdim, xdim, sizeof(float));
 
- 	starpu_matrix_data_register(&C_handle, STARPU_MAIN_RAM, (uintptr_t)C, 
 
- 		ydim, ydim, xdim, sizeof(float));
 
- 	/* A filter is a method to partition a data into disjoint chunks, it is
 
- 	 * described by the means of the "struct starpu_data_filter" structure that
 
- 	 * contains a function that is applied on a data handle to partition it
 
- 	 * into smaller chunks, and an argument that is passed to the function
 
- 	 * (eg. the number of blocks to create here).
 
- 	 */
 
- 	/* StarPU supplies some basic filters such as the partition of a matrix
 
- 	 * into blocks, note that we are using a FORTRAN ordering so that the
 
- 	 * name of the filters are a bit misleading */
 
- 	struct starpu_data_filter vert =
 
- 	{
 
- 		.filter_func = starpu_matrix_filter_vertical_block,
 
- 		.nchildren = nslicesx
 
- 	};
 
- 	struct starpu_data_filter horiz =
 
- 	{
 
- 		.filter_func = starpu_matrix_filter_block,
 
- 		.nchildren = nslicesy
 
- 	};
 
- /*
 
-  *	Illustration with nslicex = 4 and nslicey = 2, it is possible to access
 
-  *	sub-data by using the "starpu_data_get_sub_data" method, which takes a data handle,
 
-  *	the number of filters to apply, and the indexes for each filters, for
 
-  *	instance:
 
-  *
 
-  *		A' handle is starpu_data_get_sub_data(A_handle, 1, 1); 
 
-  *		B' handle is starpu_data_get_sub_data(B_handle, 1, 2); 
 
-  *		C' handle is starpu_data_get_sub_data(C_handle, 2, 2, 1); 
 
-  *
 
-  *	Note that here we applied 2 filters recursively onto C.
 
-  *
 
-  *	"starpu_data_get_sub_data(C_handle, 1, 3)" would return a handle to the 4th column
 
-  *	of blocked matrix C for example.
 
-  *
 
-  *		              |---|---|---|---|
 
-  *		              |   |   | B'|   | B
 
-  *		              |---|---|---|---|
 
-  *		                0   1   2   3
 
-  *		     |----|   |---|---|---|---|
 
-  *		     |    |   |   |   |   |   |
 
-  *		     |    | 0 |   |   |   |   |
 
-  *		     |----|   |---|---|---|---|
 
-  *		     | A' |   |   |   | C'|   |
 
-  *		     |    |   |   |   |   |   |
 
-  *		     |----|   |---|---|---|---|
 
-  *		       A              C
 
-  *
 
-  *	IMPORTANT: applying filters is equivalent to partitionning a piece of
 
-  *	data in a hierarchical manner, so that memory consistency is enforced
 
-  *	for each of the elements independantly. The tasks should therefore NOT
 
-  *	access inner nodes (eg. one column of C or the whole C) but only the
 
-  *	leafs of the tree (ie. blocks here). Manipulating inner nodes is only
 
-  *	possible by disapplying the filters (using starpu_data_unpartition), to
 
-  *	enforce memory consistency.
 
-  */
 
- 	starpu_data_partition(B_handle, &vert);
 
- 	starpu_data_partition(A_handle, &horiz);
 
- 	/* starpu_data_map_filters is a variable-arity function, the first argument
 
- 	 * is the handle of the data to partition, the second argument is the
 
- 	 * number of filters to apply recursively. Filters are applied in the
 
- 	 * same order as the arguments.
 
- 	 * This would be equivalent to starpu_data_partition(C_handle, &vert) and
 
- 	 * then applying horiz on each sub-data (ie. each column of C)
 
- 	 */
 
- 	starpu_data_map_filters(C_handle, 2, &vert, &horiz);
 
- }
 
- static struct starpu_perfmodel mult_perf_model =
 
- {
 
- 	.type = STARPU_HISTORY_BASED,
 
- 	.symbol = "mult_perf_model"
 
- };
 
- static struct starpu_codelet cl =
 
- {
 
-         /* we can only execute that kernel on a CPU yet */
 
-         /* CPU implementation of the codelet */
 
-         .cpu_funcs = {cpu_mult, NULL},
 
-         .cpu_funcs_name = {"cpu_mult", NULL},
 
-         /* the codelet manipulates 3 buffers that are managed by the
 
-          * DSM */
 
-         .nbuffers = 3,
 
- 	.modes = {STARPU_R, STARPU_R, STARPU_W},
 
-         /* in case the scheduling policy may use performance models */
 
-         .model = &mult_perf_model
 
- };
 
- static int launch_tasks(void)
 
- {
 
- 	int ret;
 
- 	/* partition the work into slices */
 
- 	unsigned taskx, tasky;
 
- 	for (taskx = 0; taskx < nslicesx; taskx++) 
 
- 	{
 
- 		for (tasky = 0; tasky < nslicesy; tasky++)
 
- 		{
 
- 			/* C[taskx, tasky] = A[tasky] B[taskx] */
 
- 			/* by default, starpu_task_create() returns an
 
-  			 * asynchronous task (ie. task->synchronous = 0) */
 
- 			struct starpu_task *task = starpu_task_create();
 
- 			/* this task implements codelet "cl" */
 
- 			task->cl = &cl;
 
- 			/*
 
- 			 *              |---|---|---|---|
 
- 			 *              |   | * |   |   | B
 
- 			 *              |---|---|---|---|
 
- 			 *                    X 
 
- 			 *     |----|   |---|---|---|---|
 
- 			 *     |****| Y |   |***|   |   |
 
- 			 *     |****|   |   |***|   |   |
 
- 			 *     |----|   |---|---|---|---|
 
- 			 *     |    |   |   |   |   |   |
 
- 			 *     |    |   |   |   |   |   |
 
- 			 *     |----|   |---|---|---|---|
 
- 			 *       A              C
 
- 			 */
 
- 			/* there was a single filter applied to matrices A
 
- 			 * (respectively B) so we grab the handle to the chunk
 
- 			 * identified by "tasky" (respectively "taskx). The "1"
 
- 			 * tells StarPU that there is a single argument to the
 
- 			 * variable-arity function starpu_data_get_sub_data */
 
- 			task->handles[0] = starpu_data_get_sub_data(A_handle, 1, tasky);
 
- 			task->handles[1] = starpu_data_get_sub_data(B_handle, 1, taskx);
 
- 			/* 2 filters were applied on matrix C, so we give
 
- 			 * starpu_data_get_sub_data 2 arguments. The order of the arguments
 
- 			 * must match the order in which the filters were
 
- 			 * applied.
 
- 			 * NB: starpu_data_get_sub_data(C_handle, 1, k) would have returned
 
- 			 * a handle to the column number k of matrix C.
 
- 			 * NB2: starpu_data_get_sub_data(C_handle, 2, taskx, tasky) is
 
- 			 * equivalent to
 
- 			 * starpu_data_get_sub_data(starpu_data_get_sub_data(C_handle, 1, taskx), 1, tasky)*/
 
- 			task->handles[2] = starpu_data_get_sub_data(C_handle, 2, taskx, tasky);
 
- 			/* this is not a blocking call since task->synchronous = 0 */
 
- 			ret = starpu_task_submit(task);
 
- 			if (ret == -ENODEV) return ret;
 
- 			STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
 
- 		}
 
- 	}
 
- 	return 0;
 
- }
 
- int main(STARPU_ATTRIBUTE_UNUSED int argc, 
 
- 	 STARPU_ATTRIBUTE_UNUSED char **argv)
 
- {
 
- 	int ret;
 
- 	/* start the runtime */
 
- 	ret = starpu_init(NULL);
 
- 	if (ret == -ENODEV)
 
- 		return 77;
 
- 	STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
 
- 	/* initialize matrices A, B and C and register them to StarPU */
 
- 	init_problem_data();
 
- 	/* partition matrices into blocks that can be manipulated by the
 
-  	 * codelets */
 
- 	partition_mult_data();
 
- 	/* submit all tasks in an asynchronous fashion */
 
- 	ret = launch_tasks();
 
- 	if (ret == -ENODEV) goto enodev;
 
- 	/* wait for termination */
 
-         starpu_task_wait_for_all();
 
- 	/* remove the filters applied by the means of starpu_data_map_filters; now
 
-  	 * it's not possible to manipulate a subset of C using starpu_data_get_sub_data until
 
- 	 * starpu_data_map_filters is called again on C_handle.
 
- 	 * The second argument is the memory node where the different subsets
 
- 	 * should be reassembled, 0 = main memory (RAM) */
 
- 	starpu_data_unpartition(A_handle, STARPU_MAIN_RAM);
 
- 	starpu_data_unpartition(B_handle, STARPU_MAIN_RAM);
 
- 	starpu_data_unpartition(C_handle, STARPU_MAIN_RAM);
 
- 	/* stop monitoring matrix C : after this, it is not possible to pass C 
 
- 	 * (or any subset of C) as a codelet input/output. This also implements
 
- 	 * a barrier so that the piece of data is put back into main memory in
 
- 	 * case it was only available on a GPU for instance. */
 
- 	starpu_data_unregister(A_handle);
 
- 	starpu_data_unregister(B_handle);
 
- 	starpu_data_unregister(C_handle);
 
- 	free(A);
 
- 	free(B);
 
- 	free(C);
 
- 	starpu_shutdown();
 
- 	return 0;
 
- enodev:
 
- 	starpu_shutdown();
 
- 	return 77;
 
- }
 
 
  |