| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 | /* dlaqsb.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dlaqsb_(char *uplo, integer *n, integer *kd, doublereal *	ab, integer *ldab, doublereal *s, doublereal *scond, doublereal *amax, 	 char *equed){    /* System generated locals */    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, j;    doublereal cj, large;    extern logical lsame_(char *, char *);    doublereal small;    extern doublereal dlamch_(char *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAQSB equilibrates a symmetric band matrix A using the scaling *//*  factors in the vector S. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KD      (input) INTEGER *//*          The number of super-diagonals of the matrix A if UPLO = 'U', *//*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix A, stored in the first KD+1 rows of the array.  The *//*          j-th column of A is stored in the j-th column of the array AB *//*          as follows: *//*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). *//*          On exit, if INFO = 0, the triangular factor U or L from the *//*          Cholesky factorization A = U'*U or A = L*L' of the band *//*          matrix A, in the same storage format as A. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KD+1. *//*  S       (input) DOUBLE PRECISION array, dimension (N) *//*          The scale factors for A. *//*  SCOND   (input) DOUBLE PRECISION *//*          Ratio of the smallest S(i) to the largest S(i). *//*  AMAX    (input) DOUBLE PRECISION *//*          Absolute value of largest matrix entry. *//*  EQUED   (output) CHARACTER*1 *//*          Specifies whether or not equilibration was done. *//*          = 'N':  No equilibration. *//*          = 'Y':  Equilibration was done, i.e., A has been replaced by *//*                  diag(S) * A * diag(S). *//*  Internal Parameters *//*  =================== *//*  THRESH is a threshold value used to decide if scaling should be done *//*  based on the ratio of the scaling factors.  If SCOND < THRESH, *//*  scaling is done. *//*  LARGE and SMALL are threshold values used to decide if scaling should *//*  be done based on the absolute size of the largest matrix element. *//*  If AMAX > LARGE or AMAX < SMALL, scaling is done. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --s;    /* Function Body */    if (*n <= 0) {	*(unsigned char *)equed = 'N';	return 0;    }/*     Initialize LARGE and SMALL. */    small = dlamch_("Safe minimum") / dlamch_("Precision");    large = 1. / small;    if (*scond >= .1 && *amax >= small && *amax <= large) {/*        No equilibration */	*(unsigned char *)equed = 'N';    } else {/*        Replace A by diag(S) * A * diag(S). */	if (lsame_(uplo, "U")) {/*           Upper triangle of A is stored in band format. */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		cj = s[j];/* Computing MAX */		i__2 = 1, i__3 = j - *kd;		i__4 = j;		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {		    ab[*kd + 1 + i__ - j + j * ab_dim1] = cj * s[i__] * ab[*			    kd + 1 + i__ - j + j * ab_dim1];/* L10: */		}/* L20: */	    }	} else {/*           Lower triangle of A is stored. */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		cj = s[j];/* Computing MIN */		i__2 = *n, i__3 = j + *kd;		i__4 = min(i__2,i__3);		for (i__ = j; i__ <= i__4; ++i__) {		    ab[i__ + 1 - j + j * ab_dim1] = cj * s[i__] * ab[i__ + 1 			    - j + j * ab_dim1];/* L30: */		}/* L40: */	    }	}	*(unsigned char *)equed = 'Y';    }    return 0;/*     End of DLAQSB */} /* dlaqsb_ */
 |