| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 | /* dla_porpvgrw.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"doublereal dla_porpvgrw__(char *uplo, integer *ncols, doublereal *a, integer *	lda, doublereal *af, integer *ldaf, doublereal *work, ftnlen uplo_len){    /* System generated locals */    integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;    doublereal ret_val, d__1, d__2, d__3;    /* Local variables */    integer i__, j;    doublereal amax, umax;    extern logical lsame_(char *, char *);    logical upper;    doublereal rpvgrw;/*     -- LAPACK routine (version 3.2.1)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLA_PORPVGRW computes the reciprocal pivot growth factor *//*  norm(A)/norm(U). The "max absolute element" norm is used. If this is *//*  much less than 1, the stability of the LU factorization of the *//*  (equilibrated) matrix A could be poor. This also means that the *//*  solution X, estimated condition numbers, and error bounds could be *//*  unreliable. *//*  Arguments *//*  ========= *//*     UPLO    (input) CHARACTER*1 *//*       = 'U':  Upper triangle of A is stored; *//*       = 'L':  Lower triangle of A is stored. *//*     NCOLS   (input) INTEGER *//*     The number of columns of the matrix A. NCOLS >= 0. *//*     A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*     On entry, the N-by-N matrix A. *//*     LDA     (input) INTEGER *//*     The leading dimension of the array A.  LDA >= max(1,N). *//*     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N) *//*     The triangular factor U or L from the Cholesky factorization *//*     A = U**T*U or A = L*L**T, as computed by DPOTRF. *//*     LDAF    (input) INTEGER *//*     The leading dimension of the array AF.  LDAF >= max(1,N). *//*     WORK    (input) DOUBLE PRECISION array, dimension (2*N) *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    af_dim1 = *ldaf;    af_offset = 1 + af_dim1;    af -= af_offset;    --work;    /* Function Body */    upper = lsame_("Upper", uplo);/*     DPOTRF will have factored only the NCOLSxNCOLS leading minor, so *//*     we restrict the growth search to that minor and use only the first *//*     2*NCOLS workspace entries. */    rpvgrw = 1.;    i__1 = *ncols << 1;    for (i__ = 1; i__ <= i__1; ++i__) {	work[i__] = 0.;    }/*     Find the max magnitude entry of each column. */    if (upper) {	i__1 = *ncols;	for (j = 1; j <= i__1; ++j) {	    i__2 = j;	    for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*			ncols + j];		work[*ncols + j] = max(d__2,d__3);	    }	}    } else {	i__1 = *ncols;	for (j = 1; j <= i__1; ++j) {	    i__2 = *ncols;	    for (i__ = j; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*			ncols + j];		work[*ncols + j] = max(d__2,d__3);	    }	}    }/*     Now find the max magnitude entry of each column of the factor in *//*     AF.  No pivoting, so no permutations. */    if (lsame_("Upper", uplo)) {	i__1 = *ncols;	for (j = 1; j <= i__1; ++j) {	    i__2 = j;	    for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = (d__1 = af[i__ + j * af_dim1], abs(d__1)), d__3 = work[			j];		work[j] = max(d__2,d__3);	    }	}    } else {	i__1 = *ncols;	for (j = 1; j <= i__1; ++j) {	    i__2 = *ncols;	    for (i__ = j; i__ <= i__2; ++i__) {/* Computing MAX */		d__2 = (d__1 = af[i__ + j * af_dim1], abs(d__1)), d__3 = work[			j];		work[j] = max(d__2,d__3);	    }	}    }/*     Compute the *inverse* of the max element growth factor.  Dividing *//*     by zero would imply the largest entry of the factor's column is *//*     zero.  Than can happen when either the column of A is zero or *//*     massive pivots made the factor underflow to zero.  Neither counts *//*     as growth in itself, so simply ignore terms with zero *//*     denominators. */    if (lsame_("Upper", uplo)) {	i__1 = *ncols;	for (i__ = 1; i__ <= i__1; ++i__) {	    umax = work[i__];	    amax = work[*ncols + i__];	    if (umax != 0.) {/* Computing MIN */		d__1 = amax / umax;		rpvgrw = min(d__1,rpvgrw);	    }	}    } else {	i__1 = *ncols;	for (i__ = 1; i__ <= i__1; ++i__) {	    umax = work[i__];	    amax = work[*ncols + i__];	    if (umax != 0.) {/* Computing MIN */		d__1 = amax / umax;		rpvgrw = min(d__1,rpvgrw);	    }	}    }    ret_val = rpvgrw;    return ret_val;} /* dla_porpvgrw__ */
 |