| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641 | /* * StarPU * Copyright (C) INRIA 2009 (see AUTHORS file) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR in PARTICULAR PURPOSE. * * See the GNU Lesser General Public License in COPYING.LGPL for more details. */#define DIV_1D 64#define STEP_TAG_1D(plan, step, i) _STEP_TAG(plan, step, i)#ifdef STARPU_USE_CUDA/* Twist the full vector into a n2 chunk */static voidSTARPUFFT(twist1_1d_kernel_gpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	int i = args->i;	int n1 = plan->n1[0];	int n2 = plan->n2[0];	_cufftComplex * restrict in = (_cufftComplex *)STARPU_GET_VECTOR_PTR(descr[0]);	_cufftComplex * restrict twisted1 = (_cufftComplex *)STARPU_GET_VECTOR_PTR(descr[1]);		cudaStream_t stream = STARPUFFT(get_local_stream)(plan, starpu_get_worker_id());	STARPUFFT(cuda_twist1_1d_host)(in, twisted1, i, n1, n2, stream);	cudaStreamSynchronize(stream);}/* Perform an n2 fft */static voidSTARPUFFT(fft1_1d_kernel_gpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	int i = args->i;	int n2 = plan->n2[0];	cufftResult cures;	_cufftComplex * restrict in = (_cufftComplex *)STARPU_GET_VECTOR_PTR(descr[0]);	_cufftComplex * restrict out = (_cufftComplex *)STARPU_GET_VECTOR_PTR(descr[1]);	const _cufftComplex * restrict roots = (_cufftComplex *)STARPU_GET_VECTOR_PTR(descr[2]);	int workerid = starpu_get_worker_id();	cudaStream_t stream;	if (!plan->plans[workerid].initialized1) {		cures = cufftPlan1d(&plan->plans[workerid].plan1_cuda, n2, _CUFFT_C2C, 1);		stream = STARPUFFT(get_local_stream)(plan, workerid);		cufftSetStream(plan->plans[workerid].plan1_cuda, stream);		STARPU_ASSERT(cures == CUFFT_SUCCESS);		plan->plans[workerid].initialized1 = 1;	}	stream = plan->plans[workerid].stream;	cures = _cufftExecC2C(plan->plans[workerid].plan1_cuda, in, out, plan->sign == -1 ? CUFFT_FORWARD : CUFFT_INVERSE);	STARPU_ASSERT(cures == CUFFT_SUCCESS);	STARPUFFT(cuda_twiddle_1d_host)(out, roots, n2, i, stream);	cudaStreamSynchronize(plan->plans[workerid].stream);}static voidSTARPUFFT(fft2_1d_kernel_gpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	int n1 = plan->n1[0];	int n2 = plan->n2[0];	int n3 = n2/DIV_1D;	cufftResult cures;	_cufftComplex * restrict in = (_cufftComplex *)STARPU_GET_VECTOR_PTR(descr[0]);	_cufftComplex * restrict out = (_cufftComplex *)STARPU_GET_VECTOR_PTR(descr[1]);	int workerid = starpu_get_worker_id();	if (!plan->plans[workerid].initialized2) {		cures = cufftPlan1d(&plan->plans[workerid].plan2_cuda, n1, _CUFFT_C2C, n3);		cudaStream_t stream = STARPUFFT(get_local_stream)(plan, workerid);		cufftSetStream(plan->plans[workerid].plan2_cuda, stream);		STARPU_ASSERT(cures == CUFFT_SUCCESS);		plan->plans[workerid].initialized2 = 1;	}	/* NOTE using batch support */	cures = _cufftExecC2C(plan->plans[workerid].plan2_cuda, in, out, plan->sign == -1 ? CUFFT_FORWARD : CUFFT_INVERSE);	STARPU_ASSERT(cures == CUFFT_SUCCESS);	cudaStreamSynchronize(plan->plans[workerid].stream);}#endif/* Twist the full vector into a n2 chunk */static voidSTARPUFFT(twist1_1d_kernel_cpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	int i = args->i;	int j;	int n1 = plan->n1[0];	int n2 = plan->n2[0];	STARPUFFT(complex) * restrict in = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[0]);	STARPUFFT(complex) * restrict twisted1 = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[1]);	//printf("twist1 %d %g\n", i, (double) cabs(plan->in[i]));	for (j = 0; j < n2; j++)		twisted1[j] = in[i+j*n1];}#ifdef STARPU_HAVE_FFTW/* Perform an n2 fft */static voidSTARPUFFT(fft1_1d_kernel_cpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	int i = args->i;	int j;	int n2 = plan->n2[0];	int workerid = starpu_get_worker_id();	const STARPUFFT(complex) * restrict twisted1 = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[0]);	STARPUFFT(complex) * restrict fft1 = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[1]);	_fftw_complex * restrict worker_in1 = (STARPUFFT(complex) *)plan->plans[workerid].in1;	_fftw_complex * restrict worker_out1 = (STARPUFFT(complex) *)plan->plans[workerid].out1;	//printf("fft1 %d %g\n", i, (double) cabs(twisted1[0]));	memcpy(worker_in1, twisted1, plan->totsize2 * sizeof(*worker_in1));	_FFTW(execute)(plan->plans[workerid].plan1_cpu);	for (j = 0; j < n2; j++)		fft1[j] = worker_out1[j] * plan->roots[0][i*j];}#endif/* Twist the full vector into a package of n2/DIV_1D (n1) chunks */static voidSTARPUFFT(twist2_1d_kernel_cpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	int jj = args->jj;	/* between 0 and DIV_1D */	int jjj;		/* beetween 0 and n3 */	int i;	int n1 = plan->n1[0];	int n2 = plan->n2[0];	int n3 = n2/DIV_1D;	STARPUFFT(complex) * restrict twisted2 = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[0]);	//printf("twist2 %d %g\n", jj, (double) cabs(plan->fft1[jj]));	for (jjj = 0; jjj < n3; jjj++) {		int j = jj * n3 + jjj;		for (i = 0; i < n1; i++)			twisted2[jjj*n1+i] = plan->fft1[i*n2+j];	}}#ifdef STARPU_HAVE_FFTW/* Perform n2/DIV_1D (n1) ffts */static voidSTARPUFFT(fft2_1d_kernel_cpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	//int jj = args->jj;	int workerid = starpu_get_worker_id();	const STARPUFFT(complex) * restrict twisted2 = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[0]);	STARPUFFT(complex) * restrict fft2 = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[1]);	//printf("fft2 %d %g\n", jj, (double) cabs(twisted2[plan->totsize4-1]));	_fftw_complex * restrict worker_in2 = (STARPUFFT(complex) *)plan->plans[workerid].in2;	_fftw_complex * restrict worker_out2 = (STARPUFFT(complex) *)plan->plans[workerid].out2;	memcpy(worker_in2, twisted2, plan->totsize4 * sizeof(*worker_in2));	_FFTW(execute)(plan->plans[workerid].plan2_cpu);	/* no twiddle */	memcpy(fft2, worker_out2, plan->totsize4 * sizeof(*worker_out2));}#endif/* Spread the package of n2/DIV_1D (n1) chunks into the full vector */static voidSTARPUFFT(twist3_1d_kernel_cpu)(void *descr[], void *_args){	struct STARPUFFT(args) *args = _args;	STARPUFFT(plan) plan = args->plan;	int jj = args->jj;	/* between 0 and DIV_1D */	int jjj;		/* beetween 0 and n3 */	int i;	int n1 = plan->n1[0];	int n2 = plan->n2[0];	int n3 = n2/DIV_1D;	const STARPUFFT(complex) * restrict fft2 = (STARPUFFT(complex) *)STARPU_GET_VECTOR_PTR(descr[0]);	//printf("twist3 %d %g\n", jj, (double) cabs(fft2[0]));	for (jjj = 0; jjj < n3; jjj++) {		int j = jj * n3 + jjj;		for (i = 0; i < n1; i++)			plan->out[i*n2+j] = fft2[jjj*n1+i];	}}static struct starpu_perfmodel_t STARPUFFT(twist1_1d_model) = {	.type = STARPU_HISTORY_BASED,	.symbol = TYPE"twist1_1d"};static struct starpu_perfmodel_t STARPUFFT(fft1_1d_model) = {	.type = STARPU_HISTORY_BASED,	.symbol = TYPE"fft1_1d"};static struct starpu_perfmodel_t STARPUFFT(twist2_1d_model) = {	.type = STARPU_HISTORY_BASED,	.symbol = TYPE"twist2_1d"};static struct starpu_perfmodel_t STARPUFFT(fft2_1d_model) = {	.type = STARPU_HISTORY_BASED,	.symbol = TYPE"fft2_1d"};static struct starpu_perfmodel_t STARPUFFT(twist3_1d_model) = {	.type = STARPU_HISTORY_BASED,	.symbol = TYPE"twist3_1d"};static starpu_codelet STARPUFFT(twist1_1d_codelet) = {	.where =#ifdef STARPU_USE_CUDA		STARPU_CUDA|#endif		STARPU_CPU,#ifdef STARPU_USE_CUDA	.cuda_func = STARPUFFT(twist1_1d_kernel_gpu),#endif	.cpu_func = STARPUFFT(twist1_1d_kernel_cpu),	.model = &STARPUFFT(twist1_1d_model),	.nbuffers = 2};static starpu_codelet STARPUFFT(fft1_1d_codelet) = {	.where =#ifdef STARPU_USE_CUDA		STARPU_CUDA|#endif#ifdef STARPU_HAVE_FFTW		STARPU_CPU|#endif		0,#ifdef STARPU_USE_CUDA	.cuda_func = STARPUFFT(fft1_1d_kernel_gpu),#endif#ifdef STARPU_HAVE_FFTW	.cpu_func = STARPUFFT(fft1_1d_kernel_cpu),#endif	.model = &STARPUFFT(fft1_1d_model),	.nbuffers = 3};static starpu_codelet STARPUFFT(twist2_1d_codelet) = {	.where = STARPU_CPU,	.cpu_func = STARPUFFT(twist2_1d_kernel_cpu),	.model = &STARPUFFT(twist2_1d_model),	.nbuffers = 1};static starpu_codelet STARPUFFT(fft2_1d_codelet) = {	.where =#ifdef STARPU_USE_CUDA		STARPU_CUDA|#endif#ifdef STARPU_HAVE_FFTW		STARPU_CPU|#endif		0,#ifdef STARPU_USE_CUDA	.cuda_func = STARPUFFT(fft2_1d_kernel_gpu),#endif#ifdef STARPU_HAVE_FFTW	.cpu_func = STARPUFFT(fft2_1d_kernel_cpu),#endif	.model = &STARPUFFT(fft2_1d_model),	.nbuffers = 2};static starpu_codelet STARPUFFT(twist3_1d_codelet) = {	.where = STARPU_CPU,	.cpu_func = STARPUFFT(twist3_1d_kernel_cpu),	.model = &STARPUFFT(twist3_1d_model),	.nbuffers = 1};STARPUFFT(plan)STARPUFFT(plan_dft_1d)(int n, int sign, unsigned flags){	int workerid;	int n1 = DIV_1D;	int n2 = n / n1;	int n3;	int z;	struct starpu_task *task;	/*	 * Simple strategy:	 *	 * - twist1: twist input in n1 (n2) chunks	 * - fft1:   perform n1 (n2) ffts	 * - twist2: twist into n2 (n1) chunks distributed in	 *           DIV_1D groups	 * - fft2:   perform DIV_1D times n3 (n1) ffts	 * - twist3: twist back into output	 */#ifdef STARPU_USE_CUDA	/* cufft 1D limited to 8M elements */	while (n2 > 8 << 20) {		n1 *= 2;		n2 /= 2;	}#endif	STARPU_ASSERT(n == n1*n2);	STARPU_ASSERT(n1 < (1ULL << I_BITS));	/* distribute the n2 second ffts into DIV_1D packages */	n3 = n2 / DIV_1D;	STARPU_ASSERT(n2 == n3*DIV_1D);	/* TODO: flags? Automatically set FFTW_MEASURE on calibration? */	STARPU_ASSERT(flags == 0);	STARPUFFT(plan) plan = malloc(sizeof(*plan));	memset(plan, 0, sizeof(*plan));	plan->number = STARPU_ATOMIC_ADD(&starpufft_last_plan_number, 1) - 1;	/* 4bit limitation in the tag space */	STARPU_ASSERT(plan->number < (1ULL << NUMBER_BITS));	plan->dim = 1;	plan->n = malloc(plan->dim * sizeof(*plan->n));	plan->n[0] = n;	check_dims(plan);	plan->n1 = malloc(plan->dim * sizeof(*plan->n1));	plan->n1[0] = n1;	plan->n2 = malloc(plan->dim * sizeof(*plan->n2));	plan->n2[0] = n2;	plan->totsize = n;	plan->totsize1 = n1;	plan->totsize2 = n2;	plan->totsize3 = DIV_1D;	plan->totsize4 = plan->totsize / plan->totsize3;	plan->type = C2C;	plan->sign = sign;	compute_roots(plan);	/* Initialize per-worker working set */	for (workerid = 0; workerid < starpu_get_worker_count(); workerid++) {		switch (starpu_get_worker_type(workerid)) {		case STARPU_CPU_WORKER:#ifdef STARPU_HAVE_FFTW			/* first fft plan: one n2 fft */			plan->plans[workerid].in1 = _FFTW(malloc)(plan->totsize2 * sizeof(_fftw_complex));			memset(plan->plans[workerid].in1, 0, plan->totsize2 * sizeof(_fftw_complex));			plan->plans[workerid].out1 = _FFTW(malloc)(plan->totsize2 * sizeof(_fftw_complex));			memset(plan->plans[workerid].out1, 0, plan->totsize2 * sizeof(_fftw_complex));			plan->plans[workerid].plan1_cpu = _FFTW(plan_dft_1d)(n2, plan->plans[workerid].in1, plan->plans[workerid].out1, sign, _FFTW_FLAGS);			STARPU_ASSERT(plan->plans[workerid].plan1_cpu);			/* second fft plan: n3 n1 ffts */			plan->plans[workerid].in2 = _FFTW(malloc)(plan->totsize4 * sizeof(_fftw_complex));			memset(plan->plans[workerid].in2, 0, plan->totsize4 * sizeof(_fftw_complex));			plan->plans[workerid].out2 = _FFTW(malloc)(plan->totsize4 * sizeof(_fftw_complex));			memset(plan->plans[workerid].out2, 0, plan->totsize4 * sizeof(_fftw_complex));			plan->plans[workerid].plan2_cpu = _FFTW(plan_many_dft)(plan->dim,					plan->n1, n3,					/* input */ plan->plans[workerid].in2, NULL, 1, plan->totsize1,					/* output */ plan->plans[workerid].out2, NULL, 1, plan->totsize1,					sign, _FFTW_FLAGS);			STARPU_ASSERT(plan->plans[workerid].plan2_cpu);#else#warning libstarpufft can not work correctly without libfftw3#endif			break;		case STARPU_CUDA_WORKER:#ifdef STARPU_USE_CUDA			plan->plans[workerid].initialized1 = 0;			plan->plans[workerid].initialized2 = 0;#endif			break;		default:			STARPU_ABORT();			break;		}	}	plan->twisted1 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->twisted1));	memset(plan->twisted1, 0, plan->totsize * sizeof(*plan->twisted1));	plan->fft1 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->fft1));	memset(plan->fft1, 0, plan->totsize * sizeof(*plan->fft1));	plan->twisted2 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->twisted2));	memset(plan->twisted2, 0, plan->totsize * sizeof(*plan->twisted2));	plan->fft2 = STARPUFFT(malloc)(plan->totsize * sizeof(*plan->fft2));	memset(plan->fft2, 0, plan->totsize * sizeof(*plan->fft2));	plan->twisted1_handle = malloc(plan->totsize1 * sizeof(*plan->twisted1_handle));	plan->fft1_handle = malloc(plan->totsize1 * sizeof(*plan->fft1_handle));	plan->twisted2_handle = malloc(plan->totsize3 * sizeof(*plan->twisted2_handle));	plan->fft2_handle = malloc(plan->totsize3 * sizeof(*plan->fft2_handle));	plan->twist1_tasks = malloc(plan->totsize1 * sizeof(*plan->twist1_tasks));	plan->fft1_tasks = malloc(plan->totsize1 * sizeof(*plan->fft1_tasks));	plan->twist2_tasks = malloc(plan->totsize3 * sizeof(*plan->twist2_tasks));	plan->fft2_tasks = malloc(plan->totsize3 * sizeof(*plan->fft2_tasks));	plan->twist3_tasks = malloc(plan->totsize3 * sizeof(*plan->twist3_tasks));	plan->fft1_args = malloc(plan->totsize1 * sizeof(*plan->fft1_args));	plan->fft2_args = malloc(plan->totsize3 * sizeof(*plan->fft2_args));	/* Create first-round tasks */	for (z = 0; z < plan->totsize1; z++) {		int i = z;#define STEP_TAG(step)	STEP_TAG_1D(plan, step, i)		plan->fft1_args[z].plan = plan;		plan->fft1_args[z].i = i;		/* Register (n2) chunks */		starpu_register_vector_data(&plan->twisted1_handle[z], 0, (uintptr_t) &plan->twisted1[z*plan->totsize2], plan->totsize2, sizeof(*plan->twisted1));		starpu_register_vector_data(&plan->fft1_handle[z], 0, (uintptr_t) &plan->fft1[z*plan->totsize2], plan->totsize2, sizeof(*plan->fft1));		/* We'll need it on the CPU for the second twist anyway */		starpu_data_set_wb_mask(plan->fft1_handle[z], 1<<0);		/* Create twist1 task */		plan->twist1_tasks[z] = task = starpu_task_create();		task->cl = &STARPUFFT(twist1_1d_codelet);		//task->buffers[0].handle = to be filled at execution		task->buffers[0].mode = STARPU_R;		task->buffers[1].handle = plan->twisted1_handle[z];		task->buffers[1].mode = STARPU_W;		task->cl_arg = &plan->fft1_args[z];		task->tag_id = STEP_TAG(TWIST1);		task->use_tag = 1;		task->detach = 1;		task->destroy = 0;		/* Tell that fft1 depends on twisted1 */		starpu_tag_declare_deps(STEP_TAG(FFT1),				1, STEP_TAG(TWIST1));		/* Create FFT1 task */		plan->fft1_tasks[z] = task = starpu_task_create();		task->cl = &STARPUFFT(fft1_1d_codelet);		task->buffers[0].handle = plan->twisted1_handle[z];		task->buffers[0].mode = STARPU_R;		task->buffers[1].handle = plan->fft1_handle[z];		task->buffers[1].mode = STARPU_W;		task->buffers[2].handle = plan->roots_handle[0];		task->buffers[2].mode = STARPU_R;		task->cl_arg = &plan->fft1_args[z];		task->tag_id = STEP_TAG(FFT1);		task->use_tag = 1;		task->detach = 1;		task->destroy = 0;		/* Tell that to be done with first step we need to have		 * finished this fft1 */		starpu_tag_declare_deps(STEP_TAG_1D(plan, JOIN, 0),				1, STEP_TAG(FFT1));#undef STEP_TAG	}	/* Create join task */	plan->join_task = task = starpu_task_create();	task->cl = NULL;	task->tag_id = STEP_TAG_1D(plan, JOIN, 0);	task->use_tag = 1;	task->detach = 1;	task->destroy = 0;	/* Create second-round tasks */	for (z = 0; z < plan->totsize3; z++) {		int jj = z;#define STEP_TAG(step)	STEP_TAG_1D(plan, step, jj)		plan->fft2_args[z].plan = plan;		plan->fft2_args[z].jj = jj;		/* Register n3 (n1) chunks */		starpu_register_vector_data(&plan->twisted2_handle[z], 0, (uintptr_t) &plan->twisted2[z*plan->totsize4], plan->totsize4, sizeof(*plan->twisted2));		starpu_register_vector_data(&plan->fft2_handle[z], 0, (uintptr_t) &plan->fft2[z*plan->totsize4], plan->totsize4, sizeof(*plan->fft2));		/* We'll need it on the CPU for the last twist anyway */		starpu_data_set_wb_mask(plan->fft2_handle[z], 1<<0);		/* Tell that twisted2 depends on the whole first step to be		 * done */		starpu_tag_declare_deps(STEP_TAG(TWIST2),				1, STEP_TAG_1D(plan, JOIN, 0));		/* Create twist2 task */		plan->twist2_tasks[z] = task = starpu_task_create();		task->cl = &STARPUFFT(twist2_1d_codelet);		task->buffers[0].handle = plan->twisted2_handle[z];		task->buffers[0].mode = STARPU_W;		task->cl_arg = &plan->fft2_args[z];		task->tag_id = STEP_TAG(TWIST2);		task->use_tag = 1;		task->detach = 1;		task->destroy = 0;		/* Tell that fft2 depends on twisted2 */		starpu_tag_declare_deps(STEP_TAG(FFT2),				1, STEP_TAG(TWIST2));		/* Create FFT2 task */		plan->fft2_tasks[z] = task = starpu_task_create();		task->cl = &STARPUFFT(fft2_1d_codelet);		task->buffers[0].handle = plan->twisted2_handle[z];		task->buffers[0].mode = STARPU_R;		task->buffers[1].handle = plan->fft2_handle[z];		task->buffers[1].mode = STARPU_W;		task->cl_arg = &plan->fft2_args[z];		task->tag_id = STEP_TAG(FFT2);		task->use_tag = 1;		task->detach = 1;		task->destroy = 0;		/* Tell that twist3 depends on fft2 */		starpu_tag_declare_deps(STEP_TAG(TWIST3),				1, STEP_TAG(FFT2));		/* Create twist3 tasks */		plan->twist3_tasks[z] = task = starpu_task_create();		task->cl = &STARPUFFT(twist3_1d_codelet);		task->buffers[0].handle = plan->fft2_handle[z];		task->buffers[0].mode = STARPU_R;		task->cl_arg = &plan->fft2_args[z];		task->tag_id = STEP_TAG(TWIST3);		task->use_tag = 1;		task->detach = 1;		task->destroy = 0;		/* Tell that to be completely finished we need to have finished this twisted3 */		starpu_tag_declare_deps(STEP_TAG_1D(plan, END, 0),				1, STEP_TAG(TWIST3));#undef STEP_TAG	}	/* Create end task */	plan->end_task = task = starpu_task_create();	task->cl = NULL;	task->tag_id = STEP_TAG_1D(plan, END, 0);	task->use_tag = 1;	task->detach = 1;	task->destroy = 0;	return plan;}static starpu_tag_tSTARPUFFT(start1dC2C)(STARPUFFT(plan) plan){	STARPU_ASSERT(plan->type == C2C);	int z;	for (z=0; z < plan->totsize1; z++) {		starpu_submit_task(plan->twist1_tasks[z]);		starpu_submit_task(plan->fft1_tasks[z]);	}	starpu_submit_task(plan->join_task);	for (z=0; z < plan->totsize3; z++) {		starpu_submit_task(plan->twist2_tasks[z]);		starpu_submit_task(plan->fft2_tasks[z]);		starpu_submit_task(plan->twist3_tasks[z]);	}	starpu_submit_task(plan->end_task);	return STEP_TAG_1D(plan, END, 0);}static voidSTARPUFFT(free_1d_tags)(STARPUFFT(plan) plan){	unsigned i;	int n1 = plan->n1[0];	for (i = 0; i < n1; i++) {		starpu_tag_remove(STEP_TAG_1D(plan, TWIST1, i));		starpu_tag_remove(STEP_TAG_1D(plan, FFT1, i));	}	starpu_tag_remove(STEP_TAG_1D(plan, JOIN, 0));	for (i = 0; i < DIV_1D; i++) {		starpu_tag_remove(STEP_TAG_1D(plan, TWIST2, i));		starpu_tag_remove(STEP_TAG_1D(plan, FFT2, i));		starpu_tag_remove(STEP_TAG_1D(plan, TWIST3, i));	}	starpu_tag_remove(STEP_TAG_1D(plan, END, 0));}
 |