| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 | 
							- /* dlaqps.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b8 = -1.;
 
- static doublereal c_b9 = 1.;
 
- static doublereal c_b16 = 0.;
 
- /* Subroutine */ int _starpu_dlaqps_(integer *m, integer *n, integer *offset, integer 
 
- 	*nb, integer *kb, doublereal *a, integer *lda, integer *jpvt, 
 
- 	doublereal *tau, doublereal *vn1, doublereal *vn2, doublereal *auxv, 
 
- 	doublereal *f, integer *ldf)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     integer i_dnnt(doublereal *);
 
-     /* Local variables */
 
-     integer j, k, rk;
 
-     doublereal akk;
 
-     integer pvt;
 
-     doublereal temp;
 
-     extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
 
-     doublereal temp2, tol3z;
 
-     extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *),
 
- 	     _starpu_dgemv_(char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     integer itemp;
 
-     extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlarfp_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *);
 
-     integer lsticc, lastrk;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAQPS computes a step of QR factorization with column pivoting */
 
- /*  of a real M-by-N matrix A by using Blas-3.  It tries to factorize */
 
- /*  NB columns from A starting from the row OFFSET+1, and updates all */
 
- /*  of the matrix with Blas-3 xGEMM. */
 
- /*  In some cases, due to catastrophic cancellations, it cannot */
 
- /*  factorize NB columns.  Hence, the actual number of factorized */
 
- /*  columns is returned in KB. */
 
- /*  Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A. M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A. N >= 0 */
 
- /*  OFFSET  (input) INTEGER */
 
- /*          The number of rows of A that have been factorized in */
 
- /*          previous steps. */
 
- /*  NB      (input) INTEGER */
 
- /*          The number of columns to factorize. */
 
- /*  KB      (output) INTEGER */
 
- /*          The number of columns actually factorized. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, block A(OFFSET+1:M,1:KB) is the triangular */
 
- /*          factor obtained and block A(1:OFFSET,1:N) has been */
 
- /*          accordingly pivoted, but no factorized. */
 
- /*          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has */
 
- /*          been updated. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,M). */
 
- /*  JPVT    (input/output) INTEGER array, dimension (N) */
 
- /*          JPVT(I) = K <==> Column K of the full matrix A has been */
 
- /*          permuted into position I in AP. */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (KB) */
 
- /*          The scalar factors of the elementary reflectors. */
 
- /*  VN1     (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The vector with the partial column norms. */
 
- /*  VN2     (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The vector with the exact column norms. */
 
- /*  AUXV    (input/output) DOUBLE PRECISION array, dimension (NB) */
 
- /*          Auxiliar vector. */
 
- /*  F       (input/output) DOUBLE PRECISION array, dimension (LDF,NB) */
 
- /*          Matrix F' = L*Y'*A. */
 
- /*  LDF     (input) INTEGER */
 
- /*          The leading dimension of the array F. LDF >= max(1,N). */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
 
- /*    X. Sun, Computer Science Dept., Duke University, USA */
 
- /*  Partial column norm updating strategy modified by */
 
- /*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
 
- /*    University of Zagreb, Croatia. */
 
- /*    June 2006. */
 
- /*  For more details see LAPACK Working Note 176. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --jpvt;
 
-     --tau;
 
-     --vn1;
 
-     --vn2;
 
-     --auxv;
 
-     f_dim1 = *ldf;
 
-     f_offset = 1 + f_dim1;
 
-     f -= f_offset;
 
-     /* Function Body */
 
- /* Computing MIN */
 
-     i__1 = *m, i__2 = *n + *offset;
 
-     lastrk = min(i__1,i__2);
 
-     lsticc = 0;
 
-     k = 0;
 
-     tol3z = sqrt(_starpu_dlamch_("Epsilon"));
 
- /*     Beginning of while loop. */
 
- L10:
 
-     if (k < *nb && lsticc == 0) {
 
- 	++k;
 
- 	rk = *offset + k;
 
- /*        Determine ith pivot column and swap if necessary */
 
- 	i__1 = *n - k + 1;
 
- 	pvt = k - 1 + _starpu_idamax_(&i__1, &vn1[k], &c__1);
 
- 	if (pvt != k) {
 
- 	    _starpu_dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
 
- 	    i__1 = k - 1;
 
- 	    _starpu_dswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf);
 
- 	    itemp = jpvt[pvt];
 
- 	    jpvt[pvt] = jpvt[k];
 
- 	    jpvt[k] = itemp;
 
- 	    vn1[pvt] = vn1[k];
 
- 	    vn2[pvt] = vn2[k];
 
- 	}
 
- /*        Apply previous Householder reflectors to column K: */
 
- /*        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'. */
 
- 	if (k > 1) {
 
- 	    i__1 = *m - rk + 1;
 
- 	    i__2 = k - 1;
 
- 	    _starpu_dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[rk + a_dim1], lda, 
 
- 		    &f[k + f_dim1], ldf, &c_b9, &a[rk + k * a_dim1], &c__1);
 
- 	}
 
- /*        Generate elementary reflector H(k). */
 
- 	if (rk < *m) {
 
- 	    i__1 = *m - rk + 1;
 
- 	    _starpu_dlarfp_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], &
 
- 		    c__1, &tau[k]);
 
- 	} else {
 
- 	    _starpu_dlarfp_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, &
 
- 		    tau[k]);
 
- 	}
 
- 	akk = a[rk + k * a_dim1];
 
- 	a[rk + k * a_dim1] = 1.;
 
- /*        Compute Kth column of F: */
 
- /*        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K). */
 
- 	if (k < *n) {
 
- 	    i__1 = *m - rk + 1;
 
- 	    i__2 = *n - k;
 
- 	    _starpu_dgemv_("Transpose", &i__1, &i__2, &tau[k], &a[rk + (k + 1) * 
 
- 		    a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b16, &f[k + 
 
- 		    1 + k * f_dim1], &c__1);
 
- 	}
 
- /*        Padding F(1:K,K) with zeros. */
 
- 	i__1 = k;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    f[j + k * f_dim1] = 0.;
 
- /* L20: */
 
- 	}
 
- /*        Incremental updating of F: */
 
- /*        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)' */
 
- /*                    *A(RK:M,K). */
 
- 	if (k > 1) {
 
- 	    i__1 = *m - rk + 1;
 
- 	    i__2 = k - 1;
 
- 	    d__1 = -tau[k];
 
- 	    _starpu_dgemv_("Transpose", &i__1, &i__2, &d__1, &a[rk + a_dim1], lda, &a[
 
- 		    rk + k * a_dim1], &c__1, &c_b16, &auxv[1], &c__1);
 
- 	    i__1 = k - 1;
 
- 	    _starpu_dgemv_("No transpose", n, &i__1, &c_b9, &f[f_dim1 + 1], ldf, &
 
- 		    auxv[1], &c__1, &c_b9, &f[k * f_dim1 + 1], &c__1);
 
- 	}
 
- /*        Update the current row of A: */
 
- /*        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'. */
 
- 	if (k < *n) {
 
- 	    i__1 = *n - k;
 
- 	    _starpu_dgemv_("No transpose", &i__1, &k, &c_b8, &f[k + 1 + f_dim1], ldf, 
 
- 		    &a[rk + a_dim1], lda, &c_b9, &a[rk + (k + 1) * a_dim1], 
 
- 		    lda);
 
- 	}
 
- /*        Update partial column norms. */
 
- 	if (rk < lastrk) {
 
- 	    i__1 = *n;
 
- 	    for (j = k + 1; j <= i__1; ++j) {
 
- 		if (vn1[j] != 0.) {
 
- /*                 NOTE: The following 4 lines follow from the analysis in */
 
- /*                 Lapack Working Note 176. */
 
- 		    temp = (d__1 = a[rk + j * a_dim1], abs(d__1)) / vn1[j];
 
- /* Computing MAX */
 
- 		    d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
 
- 		    temp = max(d__1,d__2);
 
- /* Computing 2nd power */
 
- 		    d__1 = vn1[j] / vn2[j];
 
- 		    temp2 = temp * (d__1 * d__1);
 
- 		    if (temp2 <= tol3z) {
 
- 			vn2[j] = (doublereal) lsticc;
 
- 			lsticc = j;
 
- 		    } else {
 
- 			vn1[j] *= sqrt(temp);
 
- 		    }
 
- 		}
 
- /* L30: */
 
- 	    }
 
- 	}
 
- 	a[rk + k * a_dim1] = akk;
 
- /*        End of while loop. */
 
- 	goto L10;
 
-     }
 
-     *kb = k;
 
-     rk = *offset + *kb;
 
- /*     Apply the block reflector to the rest of the matrix: */
 
- /*     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - */
 
- /*                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'. */
 
- /* Computing MIN */
 
-     i__1 = *n, i__2 = *m - *offset;
 
-     if (*kb < min(i__1,i__2)) {
 
- 	i__1 = *m - rk;
 
- 	i__2 = *n - *kb;
 
- 	_starpu_dgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b8, &a[rk + 
 
- 		1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b9, &a[rk + 1 
 
- 		+ (*kb + 1) * a_dim1], lda);
 
-     }
 
- /*     Recomputation of difficult columns. */
 
- L40:
 
-     if (lsticc > 0) {
 
- 	itemp = i_dnnt(&vn2[lsticc]);
 
- 	i__1 = *m - rk;
 
- 	vn1[lsticc] = _starpu_dnrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1);
 
- /*        NOTE: The computation of VN1( LSTICC ) relies on the fact that */
 
- /*        SNRM2 does not fail on vectors with norm below the value of */
 
- /*        SQRT(DLAMCH('S')) */
 
- 	vn2[lsticc] = vn1[lsticc];
 
- 	lsticc = itemp;
 
- 	goto L40;
 
-     }
 
-     return 0;
 
- /*     End of DLAQPS */
 
- } /* _starpu_dlaqps_ */
 
 
  |