| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 | 
							- /* dlansy.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- doublereal _starpu_dlansy_(char *norm, char *uplo, integer *n, doublereal *a, integer 
 
- 	*lda, doublereal *work)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     doublereal ret_val, d__1, d__2, d__3;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal sum, absa, scale;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal value;
 
-     extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLANSY  returns the value of the one norm,  or the Frobenius norm, or */
 
- /*  the  infinity norm,  or the  element of  largest absolute value  of a */
 
- /*  real symmetric matrix A. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  DLANSY returns the value */
 
- /*     DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
 
- /*              ( */
 
- /*              ( norm1(A),         NORM = '1', 'O' or 'o' */
 
- /*              ( */
 
- /*              ( normI(A),         NORM = 'I' or 'i' */
 
- /*              ( */
 
- /*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */
 
- /*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
 
- /*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
 
- /*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
 
- /*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NORM    (input) CHARACTER*1 */
 
- /*          Specifies the value to be returned in DLANSY as described */
 
- /*          above. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the upper or lower triangular part of the */
 
- /*          symmetric matrix A is to be referenced. */
 
- /*          = 'U':  Upper triangular part of A is referenced */
 
- /*          = 'L':  Lower triangular part of A is referenced */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0.  When N = 0, DLANSY is */
 
- /*          set to zero. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          The symmetric matrix A.  If UPLO = 'U', the leading n by n */
 
- /*          upper triangular part of A contains the upper triangular part */
 
- /*          of the matrix A, and the strictly lower triangular part of A */
 
- /*          is not referenced.  If UPLO = 'L', the leading n by n lower */
 
- /*          triangular part of A contains the lower triangular part of */
 
- /*          the matrix A, and the strictly upper triangular part of A is */
 
- /*          not referenced. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(N,1). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
 
- /*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
 
- /*          WORK is not referenced. */
 
- /* ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --work;
 
-     /* Function Body */
 
-     if (*n == 0) {
 
- 	value = 0.;
 
-     } else if (_starpu_lsame_(norm, "M")) {
 
- /*        Find max(abs(A(i,j))). */
 
- 	value = 0.;
 
- 	if (_starpu_lsame_(uplo, "U")) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = j;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 		    d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
 
- 			    d__1));
 
- 		    value = max(d__2,d__3);
 
- /* L10: */
 
- 		}
 
- /* L20: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *n;
 
- 		for (i__ = j; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 		    d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
 
- 			    d__1));
 
- 		    value = max(d__2,d__3);
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- 	}
 
-     } else if (_starpu_lsame_(norm, "I") || _starpu_lsame_(norm, "O") || *(unsigned char *)norm == '1') {
 
- /*        Find normI(A) ( = norm1(A), since A is symmetric). */
 
- 	value = 0.;
 
- 	if (_starpu_lsame_(uplo, "U")) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		sum = 0.;
 
- 		i__2 = j - 1;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    absa = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		    sum += absa;
 
- 		    work[i__] += absa;
 
- /* L50: */
 
- 		}
 
- 		work[j] = sum + (d__1 = a[j + j * a_dim1], abs(d__1));
 
- /* L60: */
 
- 	    }
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 		d__1 = value, d__2 = work[i__];
 
- 		value = max(d__1,d__2);
 
- /* L70: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		work[i__] = 0.;
 
- /* L80: */
 
- 	    }
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		sum = work[j] + (d__1 = a[j + j * a_dim1], abs(d__1));
 
- 		i__2 = *n;
 
- 		for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 		    absa = (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- 		    sum += absa;
 
- 		    work[i__] += absa;
 
- /* L90: */
 
- 		}
 
- 		value = max(value,sum);
 
- /* L100: */
 
- 	    }
 
- 	}
 
-     } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {
 
- /*        Find normF(A). */
 
- 	scale = 0.;
 
- 	sum = 1.;
 
- 	if (_starpu_lsame_(uplo, "U")) {
 
- 	    i__1 = *n;
 
- 	    for (j = 2; j <= i__1; ++j) {
 
- 		i__2 = j - 1;
 
- 		_starpu_dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
 
- /* L110: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n - 1;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *n - j;
 
- 		_starpu_dlassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum);
 
- /* L120: */
 
- 	    }
 
- 	}
 
- 	sum *= 2;
 
- 	i__1 = *lda + 1;
 
- 	_starpu_dlassq_(n, &a[a_offset], &i__1, &scale, &sum);
 
- 	value = scale * sqrt(sum);
 
-     }
 
-     ret_val = value;
 
-     return ret_val;
 
- /*     End of DLANSY */
 
- } /* _starpu_dlansy_ */
 
 
  |