| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 | 
							- /* dgbequb.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dgbequb_(integer *m, integer *n, integer *kl, integer *
 
- 	ku, doublereal *ab, integer *ldab, doublereal *r__, doublereal *c__, 
 
- 	doublereal *rowcnd, doublereal *colcnd, doublereal *amax, integer *
 
- 	info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Builtin functions */
 
-     double log(doublereal), pow_di(doublereal *, integer *);
 
-     /* Local variables */
 
-     integer i__, j, kd;
 
-     doublereal radix, rcmin, rcmax;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum, logrdx, smlnum;
 
- /*     -- LAPACK routine (version 3.2)                                 -- */
 
- /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
 
- /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
 
- /*     -- November 2008                                                -- */
 
- /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
 
- /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
 
- /*     .. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGBEQUB computes row and column scalings intended to equilibrate an */
 
- /*  M-by-N matrix A and reduce its condition number.  R returns the row */
 
- /*  scale factors and C the column scale factors, chosen to try to make */
 
- /*  the largest element in each row and column of the matrix B with */
 
- /*  elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
 
- /*  the radix. */
 
- /*  R(i) and C(j) are restricted to be a power of the radix between */
 
- /*  SMLNUM = smallest safe number and BIGNUM = largest safe number.  Use */
 
- /*  of these scaling factors is not guaranteed to reduce the condition */
 
- /*  number of A but works well in practice. */
 
- /*  This routine differs from DGEEQU by restricting the scaling factors */
 
- /*  to a power of the radix.  Baring over- and underflow, scaling by */
 
- /*  these factors introduces no additional rounding errors.  However, the */
 
- /*  scaled entries' magnitured are no longer approximately 1 but lie */
 
- /*  between sqrt(radix) and 1/sqrt(radix). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= 0. */
 
- /*  KL      (input) INTEGER */
 
- /*          The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*  KU      (input) INTEGER */
 
- /*          The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
 
- /*          The j-th column of A is stored in the j-th column of the */
 
- /*          array AB as follows: */
 
- /*          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDAB >= max(1,M). */
 
- /*  R       (output) DOUBLE PRECISION array, dimension (M) */
 
- /*          If INFO = 0 or INFO > M, R contains the row scale factors */
 
- /*          for A. */
 
- /*  C       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0,  C contains the column scale factors for A. */
 
- /*  ROWCND  (output) DOUBLE PRECISION */
 
- /*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
 
- /*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and */
 
- /*          AMAX is neither too large nor too small, it is not worth */
 
- /*          scaling by R. */
 
- /*  COLCND  (output) DOUBLE PRECISION */
 
- /*          If INFO = 0, COLCND contains the ratio of the smallest */
 
- /*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not */
 
- /*          worth scaling by C. */
 
- /*  AMAX    (output) DOUBLE PRECISION */
 
- /*          Absolute value of largest matrix element.  If AMAX is very */
 
- /*          close to overflow or very close to underflow, the matrix */
 
- /*          should be scaled. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i,  and i is */
 
- /*                <= M:  the i-th row of A is exactly zero */
 
- /*                >  M:  the (i-M)-th column of A is exactly zero */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     --r__;
 
-     --c__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kl < 0) {
 
- 	*info = -3;
 
-     } else if (*ku < 0) {
 
- 	*info = -4;
 
-     } else if (*ldab < *kl + *ku + 1) {
 
- 	*info = -6;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGBEQUB", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == 0 || *n == 0) {
 
- 	*rowcnd = 1.;
 
- 	*colcnd = 1.;
 
- 	*amax = 0.;
 
- 	return 0;
 
-     }
 
- /*     Get machine constants.  Assume SMLNUM is a power of the radix. */
 
-     smlnum = _starpu_dlamch_("S");
 
-     bignum = 1. / smlnum;
 
-     radix = _starpu_dlamch_("B");
 
-     logrdx = log(radix);
 
- /*     Compute row scale factors. */
 
-     i__1 = *m;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	r__[i__] = 0.;
 
- /* L10: */
 
-     }
 
- /*     Find the maximum element in each row. */
 
-     kd = *ku + 1;
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 	i__2 = j - *ku;
 
- /* Computing MIN */
 
- 	i__4 = j + *kl;
 
- 	i__3 = min(i__4,*m);
 
- 	for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = r__[i__], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1], 
 
- 		    abs(d__1));
 
- 	    r__[i__] = max(d__2,d__3);
 
- /* L20: */
 
- 	}
 
- /* L30: */
 
-     }
 
-     i__1 = *m;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (r__[i__] > 0.) {
 
- 	    i__3 = (integer) (log(r__[i__]) / logrdx);
 
- 	    r__[i__] = pow_di(&radix, &i__3);
 
- 	}
 
-     }
 
- /*     Find the maximum and minimum scale factors. */
 
-     rcmin = bignum;
 
-     rcmax = 0.;
 
-     i__1 = *m;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- /* Computing MAX */
 
- 	d__1 = rcmax, d__2 = r__[i__];
 
- 	rcmax = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	d__1 = rcmin, d__2 = r__[i__];
 
- 	rcmin = min(d__1,d__2);
 
- /* L40: */
 
-     }
 
-     *amax = rcmax;
 
-     if (rcmin == 0.) {
 
- /*        Find the first zero scale factor and return an error code. */
 
- 	i__1 = *m;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if (r__[i__] == 0.) {
 
- 		*info = i__;
 
- 		return 0;
 
- 	    }
 
- /* L50: */
 
- 	}
 
-     } else {
 
- /*        Invert the scale factors. */
 
- 	i__1 = *m;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- /* Computing MIN */
 
- /* Computing MAX */
 
- 	    d__2 = r__[i__];
 
- 	    d__1 = max(d__2,smlnum);
 
- 	    r__[i__] = 1. / min(d__1,bignum);
 
- /* L60: */
 
- 	}
 
- /*        Compute ROWCND = min(R(I)) / max(R(I)). */
 
- 	*rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
 
-     }
 
- /*     Compute column scale factors. */
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	c__[j] = 0.;
 
- /* L70: */
 
-     }
 
- /*     Find the maximum element in each column, */
 
- /*     assuming the row scaling computed above. */
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 	i__3 = j - *ku;
 
- /* Computing MIN */
 
- 	i__4 = j + *kl;
 
- 	i__2 = min(i__4,*m);
 
- 	for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = c__[j], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(
 
- 		    d__1)) * r__[i__];
 
- 	    c__[j] = max(d__2,d__3);
 
- /* L80: */
 
- 	}
 
- 	if (c__[j] > 0.) {
 
- 	    i__2 = (integer) (log(c__[j]) / logrdx);
 
- 	    c__[j] = pow_di(&radix, &i__2);
 
- 	}
 
- /* L90: */
 
-     }
 
- /*     Find the maximum and minimum scale factors. */
 
-     rcmin = bignum;
 
-     rcmax = 0.;
 
-     i__1 = *n;
 
-     for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 	d__1 = rcmin, d__2 = c__[j];
 
- 	rcmin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	d__1 = rcmax, d__2 = c__[j];
 
- 	rcmax = max(d__1,d__2);
 
- /* L100: */
 
-     }
 
-     if (rcmin == 0.) {
 
- /*        Find the first zero scale factor and return an error code. */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    if (c__[j] == 0.) {
 
- 		*info = *m + j;
 
- 		return 0;
 
- 	    }
 
- /* L110: */
 
- 	}
 
-     } else {
 
- /*        Invert the scale factors. */
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- /* Computing MAX */
 
- 	    d__2 = c__[j];
 
- 	    d__1 = max(d__2,smlnum);
 
- 	    c__[j] = 1. / min(d__1,bignum);
 
- /* L120: */
 
- 	}
 
- /*        Compute COLCND = min(C(J)) / max(C(J)). */
 
- 	*colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
 
-     }
 
-     return 0;
 
- /*     End of DGBEQUB */
 
- } /* _starpu_dgbequb_ */
 
 
  |