basic-api.texi 119 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Management:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_driver}
  34. @table @asis
  35. @item @code{enum starpu_archtype type}
  36. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  37. STARPU_OPENCL_DRIVER are currently supported.
  38. @item @code{union id} Anonymous union
  39. @table @asis
  40. @item @code{unsigned cpu_id}
  41. Should only be used if type is STARPU_CPU_WORKER.
  42. @item @code{unsigned cuda_id}
  43. Should only be used if type is STARPU_CUDA_WORKER.
  44. @item @code{cl_device_id opencl_id}
  45. Should only be used if type is STARPU_OPENCL_WORKER.
  46. @end table
  47. @end table
  48. @end deftp
  49. @deftp {Data Type} {struct starpu_conf}
  50. This structure is passed to the @code{starpu_init} function in order
  51. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  52. When the default value is used, StarPU automatically selects the number of
  53. processing units and takes the default scheduling policy. The environment
  54. variables overwrite the equivalent parameters.
  55. @table @asis
  56. @item @code{const char *sched_policy_name} (default = NULL)
  57. This is the name of the scheduling policy. This can also be specified
  58. with the @code{STARPU_SCHED} environment variable.
  59. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  60. This is the definition of the scheduling policy. This field is ignored
  61. if @code{sched_policy_name} is set.
  62. @item @code{int ncpus} (default = -1)
  63. This is the number of CPU cores that StarPU can use. This can also be
  64. specified with the @code{STARPU_NCPU} environment variable.
  65. @item @code{int ncuda} (default = -1)
  66. This is the number of CUDA devices that StarPU can use. This can also
  67. be specified with the @code{STARPU_NCUDA} environment variable.
  68. @item @code{int nopencl} (default = -1)
  69. This is the number of OpenCL devices that StarPU can use. This can
  70. also be specified with the @code{STARPU_NOPENCL} environment variable.
  71. @item @code{int nspus} (default = -1)
  72. This is the number of Cell SPUs that StarPU can use. This can also be
  73. specified with the @code{STARPU_NGORDON} environment variable.
  74. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  75. If this flag is set, the @code{workers_bindid} array indicates where the
  76. different workers are bound, otherwise StarPU automatically selects where to
  77. bind the different workers. This can also be specified with the
  78. @code{STARPU_WORKERS_CPUID} environment variable.
  79. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  80. If the @code{use_explicit_workers_bindid} flag is set, this array
  81. indicates where to bind the different workers. The i-th entry of the
  82. @code{workers_bindid} indicates the logical identifier of the
  83. processor which should execute the i-th worker. Note that the logical
  84. ordering of the CPUs is either determined by the OS, or provided by
  85. the @code{hwloc} library in case it is available.
  86. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  87. If this flag is set, the CUDA workers will be attached to the CUDA devices
  88. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  89. CUDA devices in a round-robin fashion. This can also be specified with the
  90. @code{STARPU_WORKERS_CUDAID} environment variable.
  91. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  92. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  93. contains the logical identifiers of the CUDA devices (as used by
  94. @code{cudaGetDevice}).
  95. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  96. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  97. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  98. the OpenCL devices in a round-robin fashion. This can also be specified with
  99. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  100. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  101. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  102. contains the logical identifiers of the OpenCL devices to be used.
  103. @item @code{int calibrate} (default = 0)
  104. If this flag is set, StarPU will calibrate the performance models when
  105. executing tasks. If this value is equal to @code{-1}, the default value is
  106. used. If the value is equal to @code{1}, it will force continuing
  107. calibration. If the value is equal to @code{2}, the existing performance
  108. models will be overwritten. This can also be specified with the
  109. @code{STARPU_CALIBRATE} environment variable.
  110. @item @code{int bus_calibrate} (default = 0)
  111. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  112. to @code{-1}, the default value is used. This can also be specified with the
  113. @code{STARPU_BUS_CALIBRATE} environment variable.
  114. @item @code{int single_combined_worker} (default = 0)
  115. By default, StarPU executes parallel tasks concurrently.
  116. Some parallel libraries (e.g. most OpenMP implementations) however do
  117. not support concurrent calls to parallel code. In such case, setting this flag
  118. makes StarPU only start one parallel task at a time.
  119. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  120. @item @code{int disable_asynchronous_copy} (default = 0)
  121. This flag should be set to 1 to disable asynchronous copies between
  122. CPUs and all accelerators. This can also be specified with the
  123. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  124. The AMD implementation of OpenCL is known to
  125. fail when copying data asynchronously. When using this implementation,
  126. it is therefore necessary to disable asynchronous data transfers.
  127. This can also be specified at compilation time by giving to the
  128. configure script the option @code{--disable-asynchronous-copy}.
  129. @item @code{int disable_cuda_asynchronous_copy} (default = 0)
  130. This flag should be set to 1 to disable asynchronous copies between
  131. CPUs and CUDA accelerators. This can also be specified with the
  132. @code{STARPU_DISABLE_CUDA_ASYNCHRONOUS_COPY} environment variable.
  133. This can also be specified at compilation time by giving to the
  134. configure script the option @code{--disable-asynchronous-cuda-copy}.
  135. @item @code{int disable_opencl_asynchronous_copy} (default = 0)
  136. This flag should be set to 1 to disable asynchronous copies between
  137. CPUs and OpenCL accelerators. This can also be specified with the
  138. @code{STARPU_DISABLE_OPENCL_ASYNCHRONOUS_COPY} environment variable.
  139. The AMD implementation of OpenCL is known to
  140. fail when copying data asynchronously. When using this implementation,
  141. it is therefore necessary to disable asynchronous data transfers.
  142. This can also be specified at compilation time by giving to the
  143. configure script the option @code{--disable-asynchronous-opencl-copy}.
  144. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  145. This can be set to an array of CUDA device identifiers for which
  146. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  147. size is specified by the @code{n_cuda_opengl_interoperability} field below
  148. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  149. This has to be set to the size of the array pointed to by the
  150. @code{cuda_opengl_interoperability} field.
  151. @item @code{struct starpu_driver *not_launched_drivers}
  152. The drivers that should not be launched by StarPU.
  153. @item @code{unsigned nnot_launched_drivers}
  154. The number of StarPU drivers that should not be launched by StarPU.
  155. @end table
  156. @end deftp
  157. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  158. This function initializes the @var{conf} structure passed as argument
  159. with the default values. In case some configuration parameters are already
  160. specified through environment variables, @code{starpu_conf_init} initializes
  161. the fields of the structure according to the environment variables. For
  162. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  163. @code{.calibrate} field of the structure passed as argument.
  164. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  165. indicates that the argument was NULL.
  166. @end deftypefun
  167. @deftypefun void starpu_shutdown (void)
  168. This is StarPU termination method. It must be called at the end of the
  169. application: statistics and other post-mortem debugging information are not
  170. guaranteed to be available until this method has been called.
  171. @end deftypefun
  172. @deftypefun int starpu_asynchronous_copy_disabled (void)
  173. Return 1 if asynchronous data transfers between CPU and accelerators
  174. are disabled.
  175. @end deftypefun
  176. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  177. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  178. are disabled.
  179. @end deftypefun
  180. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  181. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  182. are disabled.
  183. @end deftypefun
  184. @node Workers' Properties
  185. @section Workers' Properties
  186. @deftp {Data Type} {enum starpu_archtype}
  187. The different values are:
  188. @table @asis
  189. @item @code{STARPU_CPU_WORKER}
  190. @item @code{STARPU_CUDA_WORKER}
  191. @item @code{STARPU_OPENCL_WORKER}
  192. @item @code{STARPU_GORDON_WORKER}
  193. @end table
  194. @end deftp
  195. @deftypefun unsigned starpu_worker_get_count (void)
  196. This function returns the number of workers (i.e. processing units executing
  197. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  198. @end deftypefun
  199. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  200. Returns the number of workers of the given @var{type}. A positive
  201. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  202. the type is not valid otherwise.
  203. @end deftypefun
  204. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  205. This function returns the number of CPUs controlled by StarPU. The returned
  206. value should be at most @code{STARPU_MAXCPUS}.
  207. @end deftypefun
  208. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  209. This function returns the number of CUDA devices controlled by StarPU. The returned
  210. value should be at most @code{STARPU_MAXCUDADEVS}.
  211. @end deftypefun
  212. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  213. This function returns the number of OpenCL devices controlled by StarPU. The returned
  214. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  215. @end deftypefun
  216. @deftypefun unsigned starpu_spu_worker_get_count (void)
  217. This function returns the number of Cell SPUs controlled by StarPU.
  218. @end deftypefun
  219. @deftypefun int starpu_worker_get_id (void)
  220. This function returns the identifier of the current worker, i.e the one associated to the calling
  221. thread. The returned value is either -1 if the current context is not a StarPU
  222. worker (i.e. when called from the application outside a task or a callback), or
  223. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  224. @end deftypefun
  225. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  226. This function gets the list of identifiers of workers with the given
  227. type. It fills the workerids array with the identifiers of the workers that have the type
  228. indicated in the first argument. The maxsize argument indicates the size of the
  229. workids array. The returned value gives the number of identifiers that were put
  230. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  231. workers with the appropriate type: in that case, the array is filled with the
  232. maxsize first elements. To avoid such overflows, the value of maxsize can be
  233. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  234. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  235. @end deftypefun
  236. @deftypefun int starpu_worker_get_devid (int @var{id})
  237. This functions returns the device id of the given worker. The worker
  238. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  239. CUDA worker, this device identifier is the logical device identifier exposed by
  240. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  241. identifier of a CPU worker is the logical identifier of the core on which the
  242. worker was bound; this identifier is either provided by the OS or by the
  243. @code{hwloc} library in case it is available.
  244. @end deftypefun
  245. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  246. This function returns the type of processing unit associated to a
  247. worker. The worker identifier is a value returned by the
  248. @code{starpu_worker_get_id} function). The returned value
  249. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  250. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  251. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  252. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  253. identifier is unspecified.
  254. @end deftypefun
  255. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  256. This function allows to get the name of a given worker.
  257. StarPU associates a unique human readable string to each processing unit. This
  258. function copies at most the @var{maxlen} first bytes of the unique string
  259. associated to a worker identified by its identifier @var{id} into the
  260. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  261. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  262. function on an invalid identifier results in an unspecified behaviour.
  263. @end deftypefun
  264. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  265. This function returns the identifier of the memory node associated to the
  266. worker identified by @var{workerid}.
  267. @end deftypefun
  268. @deftp {Data Type} {enum starpu_node_kind}
  269. todo
  270. @table @asis
  271. @item @code{STARPU_UNUSED}
  272. @item @code{STARPU_CPU_RAM}
  273. @item @code{STARPU_CUDA_RAM}
  274. @item @code{STARPU_OPENCL_RAM}
  275. @item @code{STARPU_SPU_LS}
  276. @end table
  277. @end deftp
  278. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  279. Returns the type of the given node as defined by @code{enum
  280. starpu_node_kind}. For example, when defining a new data interface,
  281. this function should be used in the allocation function to determine
  282. on which device the memory needs to be allocated.
  283. @end deftypefun
  284. @node Data Management
  285. @section Data Management
  286. @menu
  287. * Introduction to Data Management::
  288. * Basic Data Management API::
  289. * Access registered data from the application::
  290. @end menu
  291. This section describes the data management facilities provided by StarPU.
  292. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  293. design their own data interfaces if required.
  294. @node Introduction to Data Management
  295. @subsection Introduction
  296. Data management is done at a high-level in StarPU: rather than accessing a mere
  297. list of contiguous buffers, the tasks may manipulate data that are described by
  298. a high-level construct which we call data interface.
  299. An example of data interface is the "vector" interface which describes a
  300. contiguous data array on a spefic memory node. This interface is a simple
  301. structure containing the number of elements in the array, the size of the
  302. elements, and the address of the array in the appropriate address space (this
  303. address may be invalid if there is no valid copy of the array in the memory
  304. node). More informations on the data interfaces provided by StarPU are
  305. given in @ref{Data Interfaces}.
  306. When a piece of data managed by StarPU is used by a task, the task
  307. implementation is given a pointer to an interface describing a valid copy of
  308. the data that is accessible from the current processing unit.
  309. Every worker is associated to a memory node which is a logical abstraction of
  310. the address space from which the processing unit gets its data. For instance,
  311. the memory node associated to the different CPU workers represents main memory
  312. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  313. Every memory node is identified by a logical index which is accessible from the
  314. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  315. to StarPU, the specified memory node indicates where the piece of data
  316. initially resides (we also call this memory node the home node of a piece of
  317. data).
  318. @node Basic Data Management API
  319. @subsection Basic Data Management API
  320. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  321. This function allocates data of the given size in main memory. It will also try to pin it in
  322. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  323. thus permit data transfer and computation overlapping. The allocated buffer must
  324. be freed thanks to the @code{starpu_free} function.
  325. @end deftypefun
  326. @deftypefun int starpu_free (void *@var{A})
  327. This function frees memory which has previously allocated with
  328. @code{starpu_malloc}.
  329. @end deftypefun
  330. @deftp {Data Type} {enum starpu_access_mode}
  331. This datatype describes a data access mode. The different available modes are:
  332. @table @asis
  333. @item @code{STARPU_R}: read-only mode.
  334. @item @code{STARPU_W}: write-only mode.
  335. @item @code{STARPU_RW}: read-write mode.
  336. This is equivalent to @code{STARPU_R|STARPU_W}.
  337. @item @code{STARPU_SCRATCH}: scratch memory.
  338. A temporary buffer is allocated for the task, but StarPU does not
  339. enforce data consistency---i.e. each device has its own buffer,
  340. independently from each other (even for CPUs), and no data transfer is
  341. ever performed. This is useful for temporary variables to avoid
  342. allocating/freeing buffers inside each task.
  343. Currently, no behavior is defined concerning the relation with the
  344. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  345. registration---i.e., the value of the scratch buffer is undefined at
  346. entry of the codelet function. It is being considered for future
  347. extensions at least to define the initial value. For now, data to be
  348. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  349. a @code{NULL} pointer, since the value of the provided buffer is simply
  350. ignored for now.
  351. @item @code{STARPU_REDUX} reduction mode.
  352. @end table
  353. @end deftp
  354. @deftp {Data Type} {starpu_data_handle_t}
  355. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  356. data. Once a piece of data has been registered to StarPU, it is associated to a
  357. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  358. over the entire machine, so that we can maintain data consistency and locate
  359. data replicates for instance.
  360. @end deftp
  361. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  362. Register a piece of data into the handle located at the @var{handleptr}
  363. address. The @var{data_interface} buffer contains the initial description of the
  364. data in the home node. The @var{ops} argument is a pointer to a structure
  365. describing the different methods used to manipulate this type of interface. See
  366. @ref{struct starpu_data_interface_ops} for more details on this structure.
  367. If @code{home_node} is -1, StarPU will automatically
  368. allocate the memory when it is used for the
  369. first time in write-only mode. Once such data handle has been automatically
  370. allocated, it is possible to access it using any access mode.
  371. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  372. matrix) which can be registered by the means of helper functions (e.g.
  373. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  374. @end deftypefun
  375. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  376. Register a new piece of data into the handle @var{handledst} with the
  377. same interface as the handle @var{handlesrc}.
  378. @end deftypefun
  379. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  380. This function unregisters a data handle from StarPU. If the data was
  381. automatically allocated by StarPU because the home node was -1, all
  382. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  383. is put back into the home node in the buffer that was initially registered.
  384. Using a data handle that has been unregistered from StarPU results in an
  385. undefined behaviour.
  386. @end deftypefun
  387. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  388. This is the same as starpu_data_unregister, except that StarPU does not put back
  389. a valid copy into the home node, in the buffer that was initially registered.
  390. @end deftypefun
  391. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  392. Destroy all replicates of the data handle. After data invalidation, the first
  393. access to the handle must be performed in write-only mode. Accessing an
  394. invalidated data in read-mode results in undefined behaviour.
  395. @end deftypefun
  396. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  397. Submits invalidation of the data handle after completion of previously submitted tasks.
  398. @end deftypefun
  399. @c TODO create a specific sections about user interaction with the DSM ?
  400. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  401. This function sets the write-through mask of a given data, i.e. a bitmask of
  402. nodes where the data should be always replicated after modification. It also
  403. prevents the data from being evicted from these nodes when memory gets scarse.
  404. @end deftypefun
  405. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  406. Issue a prefetch request for a given data to a given node, i.e.
  407. requests that the data be replicated to the given node, so that it is available
  408. there for tasks. If the @var{async} parameter is 0, the call will block until
  409. the transfer is achieved, else the call will return as soon as the request is
  410. scheduled (which may however have to wait for a task completion).
  411. @end deftypefun
  412. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  413. Return the handle corresponding to the data pointed to by the @var{ptr}
  414. host pointer.
  415. @end deftypefun
  416. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  417. Explicitly ask StarPU to allocate room for a piece of data on the specified
  418. memory node.
  419. @end deftypefun
  420. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  421. Query the status of the handle on the specified memory node.
  422. @end deftypefun
  423. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  424. This function allows to specify that a piece of data can be discarded
  425. without impacting the application.
  426. @end deftypefun
  427. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  428. This sets the codelets to be used for the @var{handle} when it is accessed in
  429. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  430. codelet, and reduction between per-worker buffers will be done with the
  431. @var{redux_cl} codelet.
  432. @end deftypefun
  433. @node Access registered data from the application
  434. @subsection Access registered data from the application
  435. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  436. The application must call this function prior to accessing registered data from
  437. main memory outside tasks. StarPU ensures that the application will get an
  438. up-to-date copy of the data in main memory located where the data was
  439. originally registered, and that all concurrent accesses (e.g. from tasks) will
  440. be consistent with the access mode specified in the @var{mode} argument.
  441. @code{starpu_data_release} must be called once the application does not need to
  442. access the piece of data anymore. Note that implicit data
  443. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  444. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  445. the data, unless they have been disabled explictly by calling
  446. @code{starpu_data_set_default_sequential_consistency_flag} or
  447. @code{starpu_data_set_sequential_consistency_flag}.
  448. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  449. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  450. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  451. @end deftypefun
  452. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  453. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  454. @code{starpu_data_acquire}. When the data specified in the first argument is
  455. available in the appropriate access mode, the callback function is executed.
  456. The application may access the requested data during the execution of this
  457. callback. The callback function must call @code{starpu_data_release} once the
  458. application does not need to access the piece of data anymore.
  459. Note that implicit data dependencies are also enforced by
  460. @code{starpu_data_acquire_cb} in case they are not disabled.
  461. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  462. be called from task callbacks. Upon successful completion, this function
  463. returns 0.
  464. @end deftypefun
  465. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  466. This is the same as @code{starpu_data_acquire}, except that the data will be
  467. available on the given memory node instead of main memory.
  468. @end deftypefun
  469. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  470. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  471. available on the given memory node instead of main memory.
  472. @end deftypefun
  473. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  474. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  475. except that the code to be executed in a callback is directly provided as a
  476. macro parameter, and the data handle is automatically released after it. This
  477. permits to easily execute code which depends on the value of some registered
  478. data. This is non-blocking too and may be called from task callbacks.
  479. @end defmac
  480. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  481. This function releases the piece of data acquired by the application either by
  482. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  483. @end deftypefun
  484. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  485. This is the same as @code{starpu_data_release}, except that the data will be
  486. available on the given memory node instead of main memory.
  487. @end deftypefun
  488. @node Data Interfaces
  489. @section Data Interfaces
  490. @menu
  491. * Registering Data::
  492. * Accessing Data Interfaces::
  493. @end menu
  494. @node Registering Data
  495. @subsection Registering Data
  496. There are several ways to register a memory region so that it can be managed by
  497. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  498. matrices as well as BCSR and CSR sparse matrices.
  499. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  500. Register a void interface. There is no data really associated to that
  501. interface, but it may be used as a synchronization mechanism. It also
  502. permits to express an abstract piece of data that is managed by the
  503. application internally: this makes it possible to forbid the
  504. concurrent execution of different tasks accessing the same "void" data
  505. in read-write concurrently.
  506. @end deftypefun
  507. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  508. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  509. typically a scalar, and initialize @var{handle} to represent this data
  510. item.
  511. @cartouche
  512. @smallexample
  513. float var;
  514. starpu_data_handle_t var_handle;
  515. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  516. @end smallexample
  517. @end cartouche
  518. @end deftypefun
  519. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  520. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  521. @var{ptr} and initialize @var{handle} to represent it.
  522. @cartouche
  523. @smallexample
  524. float vector[NX];
  525. starpu_data_handle_t vector_handle;
  526. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  527. sizeof(vector[0]));
  528. @end smallexample
  529. @end cartouche
  530. @end deftypefun
  531. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  532. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  533. pointed by @var{ptr} and initialize @var{handle} to represent it.
  534. @var{ld} specifies the number of elements between rows.
  535. a value greater than @var{nx} adds padding, which can be useful for
  536. alignment purposes.
  537. @cartouche
  538. @smallexample
  539. float *matrix;
  540. starpu_data_handle_t matrix_handle;
  541. matrix = (float*)malloc(width * height * sizeof(float));
  542. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  543. width, width, height, sizeof(float));
  544. @end smallexample
  545. @end cartouche
  546. @end deftypefun
  547. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  548. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  549. elements pointed by @var{ptr} and initialize @var{handle} to represent
  550. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  551. between rows and between z planes.
  552. @cartouche
  553. @smallexample
  554. float *block;
  555. starpu_data_handle_t block_handle;
  556. block = (float*)malloc(nx*ny*nz*sizeof(float));
  557. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  558. nx, nx*ny, nx, ny, nz, sizeof(float));
  559. @end smallexample
  560. @end cartouche
  561. @end deftypefun
  562. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  563. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  564. Compressed Sparse Row Representation) sparse matrix interface.
  565. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  566. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  567. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  568. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  569. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  570. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  571. or 1).
  572. @end deftypefun
  573. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  574. This variant of @code{starpu_data_register} uses the CSR (Compressed
  575. Sparse Row Representation) sparse matrix interface.
  576. TODO
  577. @end deftypefun
  578. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  579. Return the interface associated with @var{handle} on @var{memory_node}.
  580. @end deftypefun
  581. @node Accessing Data Interfaces
  582. @subsection Accessing Data Interfaces
  583. Each data interface is provided with a set of field access functions.
  584. The ones using a @code{void *} parameter aimed to be used in codelet
  585. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  586. @deftp {Data Type} {enum starpu_data_interface_id}
  587. The different values are:
  588. @table @asis
  589. @item @code{STARPU_MATRIX_INTERFACE_ID}
  590. @item @code{STARPU_BLOCK_INTERFACE_ID}
  591. @item @code{STARPU_VECTOR_INTERFACE_ID}
  592. @item @code{STARPU_CSR_INTERFACE_ID}
  593. @item @code{STARPU_BCSR_INTERFACE_ID}
  594. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  595. @item @code{STARPU_VOID_INTERFACE_ID}
  596. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  597. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  598. @end table
  599. @end deftp
  600. @menu
  601. * Accessing Handle::
  602. * Accessing Variable Data Interfaces::
  603. * Accessing Vector Data Interfaces::
  604. * Accessing Matrix Data Interfaces::
  605. * Accessing Block Data Interfaces::
  606. * Accessing BCSR Data Interfaces::
  607. * Accessing CSR Data Interfaces::
  608. @end menu
  609. @node Accessing Handle
  610. @subsubsection Handle
  611. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  612. Return the pointer associated with @var{handle} on node @var{node} or
  613. @code{NULL} if @var{handle}'s interface does not support this
  614. operation or data for this handle is not allocated on that node.
  615. @end deftypefun
  616. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  617. Return the local pointer associated with @var{handle} or @code{NULL}
  618. if @var{handle}'s interface does not have data allocated locally
  619. @end deftypefun
  620. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  621. Return the unique identifier of the interface associated with the given @var{handle}.
  622. @end deftypefun
  623. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  624. Return the size of the data associated with @var{handle}
  625. @end deftypefun
  626. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr})
  627. Allocates a buffer large enough at @var{ptr} and copy to the newly
  628. allocated buffer the data associated to @var{handle}. The interface of
  629. the data registered at @var{handle} must define a packing operation
  630. (@pxref{struct starpu_data_interface_ops}).
  631. @end deftypefun
  632. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr})
  633. Copy in @var{handle} the data located at @var{ptr} as described by the
  634. interface of the data. The interface registered at @var{handle} must
  635. define a unpacking operation (@pxref{struct starpu_data_interface_ops}).
  636. @end deftypefun
  637. @node Accessing Variable Data Interfaces
  638. @subsubsection Variable Data Interfaces
  639. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  640. Return the size of the variable designated by @var{handle}.
  641. @end deftypefun
  642. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  643. Return a pointer to the variable designated by @var{handle}.
  644. @end deftypefun
  645. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  646. Return a pointer to the variable designated by @var{interface}.
  647. @end defmac
  648. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  649. Return the size of the variable designated by @var{interface}.
  650. @end defmac
  651. @node Accessing Vector Data Interfaces
  652. @subsubsection Vector Data Interfaces
  653. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  654. Return the number of elements registered into the array designated by @var{handle}.
  655. @end deftypefun
  656. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  657. Return the size of each element of the array designated by @var{handle}.
  658. @end deftypefun
  659. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  660. Return the local pointer associated with @var{handle}.
  661. @end deftypefun
  662. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  663. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  664. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  665. @end defmac
  666. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  667. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  668. documented below has to be used in addition to this.
  669. @end defmac
  670. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  671. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  672. @end defmac
  673. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  674. Return the number of elements registered into the array designated by @var{interface}.
  675. @end defmac
  676. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  677. Return the size of each element of the array designated by @var{interface}.
  678. @end defmac
  679. @node Accessing Matrix Data Interfaces
  680. @subsubsection Matrix Data Interfaces
  681. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  682. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  683. @end deftypefun
  684. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  685. Return the number of elements on the y-axis of the matrix designated by
  686. @var{handle}.
  687. @end deftypefun
  688. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  689. Return the number of elements between each row of the matrix designated by
  690. @var{handle}. Maybe be equal to nx when there is no padding.
  691. @end deftypefun
  692. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  693. Return the local pointer associated with @var{handle}.
  694. @end deftypefun
  695. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  696. Return the size of the elements registered into the matrix designated by
  697. @var{handle}.
  698. @end deftypefun
  699. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  700. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  701. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  702. used instead.
  703. @end defmac
  704. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  705. Return a device handle for the matrix designated by @var{interface}, to be used
  706. on OpenCL. The offset documented below has to be used in addition to this.
  707. @end defmac
  708. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  709. Return the offset in the matrix designated by @var{interface}, to be used with
  710. the device handle.
  711. @end defmac
  712. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  713. Return the number of elements on the x-axis of the matrix designated by
  714. @var{interface}.
  715. @end defmac
  716. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  717. Return the number of elements on the y-axis of the matrix designated by
  718. @var{interface}.
  719. @end defmac
  720. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  721. Return the number of elements between each row of the matrix designated by
  722. @var{interface}. May be equal to nx when there is no padding.
  723. @end defmac
  724. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  725. Return the size of the elements registered into the matrix designated by
  726. @var{interface}.
  727. @end defmac
  728. @node Accessing Block Data Interfaces
  729. @subsubsection Block Data Interfaces
  730. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  731. Return the number of elements on the x-axis of the block designated by @var{handle}.
  732. @end deftypefun
  733. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  734. Return the number of elements on the y-axis of the block designated by @var{handle}.
  735. @end deftypefun
  736. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  737. Return the number of elements on the z-axis of the block designated by @var{handle}.
  738. @end deftypefun
  739. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  740. Return the number of elements between each row of the block designated by
  741. @var{handle}, in the format of the current memory node.
  742. @end deftypefun
  743. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  744. Return the number of elements between each z plane of the block designated by
  745. @var{handle}, in the format of the current memory node.
  746. @end deftypefun
  747. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  748. Return the local pointer associated with @var{handle}.
  749. @end deftypefun
  750. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  751. Return the size of the elements of the block designated by @var{handle}.
  752. @end deftypefun
  753. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  754. Return a pointer to the block designated by @var{interface}.
  755. @end defmac
  756. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  757. Return a device handle for the block designated by @var{interface}, to be used
  758. on OpenCL. The offset document below has to be used in addition to this.
  759. @end defmac
  760. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  761. Return the offset in the block designated by @var{interface}, to be used with
  762. the device handle.
  763. @end defmac
  764. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  765. Return the number of elements on the x-axis of the block designated by @var{handle}.
  766. @end defmac
  767. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  768. Return the number of elements on the y-axis of the block designated by @var{handle}.
  769. @end defmac
  770. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  771. Return the number of elements on the z-axis of the block designated by @var{handle}.
  772. @end defmac
  773. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  774. Return the number of elements between each row of the block designated by
  775. @var{interface}. May be equal to nx when there is no padding.
  776. @end defmac
  777. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  778. Return the number of elements between each z plane of the block designated by
  779. @var{interface}. May be equal to nx*ny when there is no padding.
  780. @end defmac
  781. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  782. Return the size of the elements of the matrix designated by @var{interface}.
  783. @end defmac
  784. @node Accessing BCSR Data Interfaces
  785. @subsubsection BCSR Data Interfaces
  786. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  787. Return the number of non-zero elements in the matrix designated by @var{handle}.
  788. @end deftypefun
  789. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  790. Return the number of rows (in terms of blocks of size r*c) in the matrix
  791. designated by @var{handle}.
  792. @end deftypefun
  793. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  794. Return the index at which all arrays (the column indexes, the row pointers...)
  795. of the matrix desginated by @var{handle} start.
  796. @end deftypefun
  797. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  798. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  799. @end deftypefun
  800. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  801. Return a pointer to the column index, which holds the positions of the non-zero
  802. entries in the matrix designated by @var{handle}.
  803. @end deftypefun
  804. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  805. Return the row pointer array of the matrix designated by @var{handle}.
  806. @end deftypefun
  807. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  808. Return the number of rows in a block.
  809. @end deftypefun
  810. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  811. Return the numberof columns in a block.
  812. @end deftypefun
  813. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  814. Return the size of the elements in the matrix designated by @var{handle}.
  815. @end deftypefun
  816. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  817. Return the number of non-zero values in the matrix designated by @var{interface}.
  818. @end defmac
  819. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  820. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  821. @end defmac
  822. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  823. Return a pointer to the column index of the matrix designated by @var{interface}.
  824. @end defmac
  825. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  826. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  827. @end defmac
  828. @node Accessing CSR Data Interfaces
  829. @subsubsection CSR Data Interfaces
  830. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  831. Return the number of non-zero values in the matrix designated by @var{handle}.
  832. @end deftypefun
  833. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  834. Return the size of the row pointer array of the matrix designated by @var{handle}.
  835. @end deftypefun
  836. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  837. Return the index at which all arrays (the column indexes, the row pointers...)
  838. of the matrix designated by @var{handle} start.
  839. @end deftypefun
  840. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  841. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  842. @end deftypefun
  843. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  844. Return a local pointer to the column index of the matrix designated by @var{handle}.
  845. @end deftypefun
  846. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  847. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  848. @end deftypefun
  849. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  850. Return the size of the elements registered into the matrix designated by @var{handle}.
  851. @end deftypefun
  852. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  853. Return the number of non-zero values in the matrix designated by @var{interface}.
  854. @end defmac
  855. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  856. Return the size of the row pointer array of the matrix designated by @var{interface}.
  857. @end defmac
  858. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  859. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  860. @end defmac
  861. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  862. Return a pointer to the column index of the matrix designated by @var{interface}.
  863. @end defmac
  864. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  865. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  866. @end defmac
  867. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  868. Return the index at which all arrays (the column indexes, the row pointers...)
  869. of the @var{interface} start.
  870. @end defmac
  871. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  872. Return the size of the elements registered into the matrix designated by @var{interface}.
  873. @end defmac
  874. @node Data Partition
  875. @section Data Partition
  876. @menu
  877. * Basic API::
  878. * Predefined filter functions::
  879. @end menu
  880. @node Basic API
  881. @subsection Basic API
  882. @deftp {Data Type} {struct starpu_data_filter}
  883. The filter structure describes a data partitioning operation, to be given to the
  884. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  885. for an example. The different fields are:
  886. @table @asis
  887. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  888. This function fills the @code{child_interface} structure with interface
  889. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  890. @item @code{unsigned nchildren}
  891. This is the number of parts to partition the data into.
  892. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  893. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  894. children depends on the actual data (e.g. the number of blocks in a sparse
  895. matrix).
  896. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  897. In case the resulting children use a different data interface, this function
  898. returns which interface is used by child number @code{id}.
  899. @item @code{unsigned filter_arg}
  900. Allow to define an additional parameter for the filter function.
  901. @item @code{void *filter_arg_ptr}
  902. Allow to define an additional pointer parameter for the filter
  903. function, such as the sizes of the different parts.
  904. @end table
  905. @end deftp
  906. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  907. @anchor{starpu_data_partition}
  908. This requests partitioning one StarPU data @var{initial_handle} into several
  909. subdata according to the filter @var{f}, as shown in the following example:
  910. @cartouche
  911. @smallexample
  912. struct starpu_data_filter f = @{
  913. .filter_func = starpu_block_filter_func,
  914. .nchildren = nslicesx,
  915. .get_nchildren = NULL,
  916. .get_child_ops = NULL
  917. @};
  918. starpu_data_partition(A_handle, &f);
  919. @end smallexample
  920. @end cartouche
  921. @end deftypefun
  922. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  923. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  924. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  925. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  926. @cartouche
  927. @smallexample
  928. starpu_data_unpartition(A_handle, 0);
  929. @end smallexample
  930. @end cartouche
  931. @end deftypefun
  932. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  933. This function returns the number of children.
  934. @end deftypefun
  935. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  936. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  937. @end deftypefun
  938. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  939. After partitioning a StarPU data by applying a filter,
  940. @code{starpu_data_get_sub_data} can be used to get handles for each of
  941. the data portions. @var{root_data} is the parent data that was
  942. partitioned. @var{depth} is the number of filters to traverse (in
  943. case several filters have been applied, to e.g. partition in row
  944. blocks, and then in column blocks), and the subsequent
  945. parameters are the indexes. The function returns a handle to the
  946. subdata.
  947. @cartouche
  948. @smallexample
  949. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  950. @end smallexample
  951. @end cartouche
  952. @end deftypefun
  953. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  954. This function is similar to @code{starpu_data_get_sub_data} but uses a
  955. va_list for the parameter list.
  956. @end deftypefun
  957. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  958. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  959. recursively. @var{nfilters} pointers to variables of the type
  960. starpu_data_filter should be given.
  961. @end deftypefun
  962. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  963. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  964. recursively. It uses a va_list of pointers to variables of the typer
  965. starpu_data_filter.
  966. @end deftypefun
  967. @node Predefined filter functions
  968. @subsection Predefined filter functions
  969. @menu
  970. * Partitioning Vector Data::
  971. * Partitioning Matrix Data::
  972. * Partitioning 3D Matrix Data::
  973. * Partitioning BCSR Data::
  974. @end menu
  975. This section gives a partial list of the predefined partitioning functions.
  976. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  977. list can be found in @code{starpu_data_filters.h} .
  978. @node Partitioning Vector Data
  979. @subsubsection Partitioning Vector Data
  980. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  981. Return in @code{*@var{child_interface}} the @var{id}th element of the
  982. vector represented by @var{father_interface} once partitioned in
  983. @var{nparts} chunks of equal size.
  984. @end deftypefun
  985. @deftypefun void starpu_block_shadow_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  986. Return in @code{*@var{child_interface}} the @var{id}th element of the
  987. vector represented by @var{father_interface} once partitioned in
  988. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  989. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  990. IMPORTANT: This can only be used for read-only access, as no coherency is
  991. enforced for the shadowed parts.
  992. A usage example is available in examples/filters/shadow.c
  993. @end deftypefun
  994. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  995. Return in @code{*@var{child_interface}} the @var{id}th element of the
  996. vector represented by @var{father_interface} once partitioned into
  997. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  998. @code{*@var{f}}.
  999. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1000. @code{uint32_t} elements, each of which specifies the number of elements
  1001. in each chunk of the partition.
  1002. @end deftypefun
  1003. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1004. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1005. vector represented by @var{father_interface} once partitioned in two
  1006. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1007. @code{0} or @code{1}.
  1008. @end deftypefun
  1009. @node Partitioning Matrix Data
  1010. @subsubsection Partitioning Matrix Data
  1011. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1012. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1013. matrices. If nparts does not divide x, the last submatrix contains the
  1014. remainder.
  1015. @end deftypefun
  1016. @deftypefun void starpu_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1017. This partitions a dense Matrix along the x dimension, with a shadow border
  1018. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1019. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1020. remainder.
  1021. IMPORTANT: This can only be used for read-only access, as no coherency is
  1022. enforced for the shadowed parts.
  1023. A usage example is available in examples/filters/shadow2d.c
  1024. @end deftypefun
  1025. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1026. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1027. matrices. If nparts does not divide y, the last submatrix contains the
  1028. remainder.
  1029. @end deftypefun
  1030. @deftypefun void starpu_vertical_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1031. This partitions a dense Matrix along the y dimension, with a shadow border
  1032. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1033. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1034. remainder.
  1035. IMPORTANT: This can only be used for read-only access, as no coherency is
  1036. enforced for the shadowed parts.
  1037. A usage example is available in examples/filters/shadow2d.c
  1038. @end deftypefun
  1039. @node Partitioning 3D Matrix Data
  1040. @subsubsection Partitioning 3D Matrix Data
  1041. A usage example is available in examples/filters/shadow3d.c
  1042. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1043. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1044. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1045. remainder.
  1046. @end deftypefun
  1047. @deftypefun void starpu_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1048. This partitions a 3D matrix along the X dimension, with a shadow border
  1049. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1050. matrices. If nparts does not divide x, the last submatrix contains the
  1051. remainder.
  1052. IMPORTANT: This can only be used for read-only access, as no coherency is
  1053. enforced for the shadowed parts.
  1054. @end deftypefun
  1055. @deftypefun void starpu_vertical_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1056. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1057. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1058. remainder.
  1059. @end deftypefun
  1060. @deftypefun void starpu_vertical_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1061. This partitions a 3D matrix along the Y dimension, with a shadow border
  1062. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1063. matrices. If nparts does not divide y, the last submatrix contains the
  1064. remainder.
  1065. IMPORTANT: This can only be used for read-only access, as no coherency is
  1066. enforced for the shadowed parts.
  1067. @end deftypefun
  1068. @deftypefun void starpu_depth_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1069. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1070. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1071. remainder.
  1072. @end deftypefun
  1073. @deftypefun void starpu_depth_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1074. This partitions a 3D matrix along the Z dimension, with a shadow border
  1075. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1076. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1077. remainder.
  1078. IMPORTANT: This can only be used for read-only access, as no coherency is
  1079. enforced for the shadowed parts.
  1080. @end deftypefun
  1081. @node Partitioning BCSR Data
  1082. @subsubsection Partitioning BCSR Data
  1083. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1084. This partitions a block-sparse matrix into dense matrices.
  1085. @end deftypefun
  1086. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1087. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1088. @end deftypefun
  1089. @node Codelets and Tasks
  1090. @section Codelets and Tasks
  1091. This section describes the interface to manipulate codelets and tasks.
  1092. @deftp {Data Type} {enum starpu_codelet_type}
  1093. Describes the type of parallel task. The different values are:
  1094. @table @asis
  1095. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1096. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1097. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1098. @code{starpu_combined_worker_get_rank} to distribute the work
  1099. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1100. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1101. determine how many threads should be started.
  1102. @end table
  1103. See @ref{Parallel Tasks} for details.
  1104. @end deftp
  1105. @defmac STARPU_CPU
  1106. This macro is used when setting the field @code{where} of a @code{struct
  1107. starpu_codelet} to specify the codelet may be executed on a CPU
  1108. processing unit.
  1109. @end defmac
  1110. @defmac STARPU_CUDA
  1111. This macro is used when setting the field @code{where} of a @code{struct
  1112. starpu_codelet} to specify the codelet may be executed on a CUDA
  1113. processing unit.
  1114. @end defmac
  1115. @defmac STARPU_SPU
  1116. This macro is used when setting the field @code{where} of a @code{struct
  1117. starpu_codelet} to specify the codelet may be executed on a SPU
  1118. processing unit.
  1119. @end defmac
  1120. @defmac STARPU_GORDON
  1121. This macro is used when setting the field @code{where} of a @code{struct
  1122. starpu_codelet} to specify the codelet may be executed on a Cell
  1123. processing unit.
  1124. @end defmac
  1125. @defmac STARPU_OPENCL
  1126. This macro is used when setting the field @code{where} of a @code{struct
  1127. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1128. processing unit.
  1129. @end defmac
  1130. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1131. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1132. with this macro indicates the codelet will have several
  1133. implementations. The use of this macro is deprecated. One should
  1134. always only define the field @code{cpu_funcs}.
  1135. @end defmac
  1136. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1137. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1138. with this macro indicates the codelet will have several
  1139. implementations. The use of this macro is deprecated. One should
  1140. always only define the field @code{cuda_funcs}.
  1141. @end defmac
  1142. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1143. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1144. with this macro indicates the codelet will have several
  1145. implementations. The use of this macro is deprecated. One should
  1146. always only define the field @code{opencl_funcs}.
  1147. @end defmac
  1148. @deftp {Data Type} {struct starpu_codelet}
  1149. The codelet structure describes a kernel that is possibly implemented on various
  1150. targets. For compatibility, make sure to initialize the whole structure to zero,
  1151. either by using explicit memset, or by letting the compiler implicitly do it in
  1152. e.g. static storage case.
  1153. @table @asis
  1154. @item @code{uint32_t where} (optional)
  1155. Indicates which types of processing units are able to execute the
  1156. codelet. The different values
  1157. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  1158. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  1159. on which types of processing units the codelet can be executed.
  1160. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1161. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  1162. indicates that it is only available on Cell SPUs. If the field is
  1163. unset, its value will be automatically set based on the availability
  1164. of the @code{XXX_funcs} fields defined below.
  1165. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1166. Defines a function which should return 1 if the worker designated by
  1167. @var{workerid} can execute the @var{nimpl}th implementation of the
  1168. given @var{task}, 0 otherwise.
  1169. @item @code{enum starpu_codelet_type type} (optional)
  1170. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1171. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1172. implementation is also available. See @ref{Parallel Tasks} for details.
  1173. @item @code{int max_parallelism} (optional)
  1174. If a parallel implementation is available, this denotes the maximum combined
  1175. worker size that StarPU will use to execute parallel tasks for this codelet.
  1176. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1177. This field has been made deprecated. One should use instead the
  1178. @code{cpu_funcs} field.
  1179. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1180. Is an array of function pointers to the CPU implementations of the codelet.
  1181. It must be terminated by a NULL value.
  1182. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1183. argument being the array of data managed by the data management library, and
  1184. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1185. field of the @code{starpu_task} structure.
  1186. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1187. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1188. field, it must be non-null otherwise.
  1189. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1190. This field has been made deprecated. One should use instead the
  1191. @code{cuda_funcs} field.
  1192. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1193. Is an array of function pointers to the CUDA implementations of the codelet.
  1194. It must be terminated by a NULL value.
  1195. @emph{The functions must be host-functions written in the CUDA runtime
  1196. API}. Their prototype must
  1197. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1198. If the @code{where} field is set, then the @code{cuda_funcs}
  1199. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1200. field, it must be non-null otherwise.
  1201. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1202. This field has been made deprecated. One should use instead the
  1203. @code{opencl_funcs} field.
  1204. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1205. Is an array of function pointers to the OpenCL implementations of the codelet.
  1206. It must be terminated by a NULL value.
  1207. The functions prototype must be:
  1208. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1209. If the @code{where} field is set, then the @code{opencl_funcs} field
  1210. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1211. field, it must be non-null otherwise.
  1212. @item @code{uint8_t gordon_func} (optional)
  1213. This field has been made deprecated. One should use instead the
  1214. @code{gordon_funcs} field.
  1215. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1216. Is an array of index of the Cell SPU implementations of the codelet within the
  1217. Gordon library.
  1218. It must be terminated by a NULL value.
  1219. See Gordon documentation for more details on how to register a kernel and
  1220. retrieve its index.
  1221. @item @code{unsigned nbuffers}
  1222. Specifies the number of arguments taken by the codelet. These arguments are
  1223. managed by the DSM and are accessed from the @code{void *buffers[]}
  1224. array. The constant argument passed with the @code{cl_arg} field of the
  1225. @code{starpu_task} structure is not counted in this number. This value should
  1226. not be above @code{STARPU_NMAXBUFS}.
  1227. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1228. Is an array of @code{enum starpu_access_mode}. It describes the
  1229. required access modes to the data neeeded by the codelet (e.g.
  1230. @code{STARPU_RW}). The number of entries in this array must be
  1231. specified in the @code{nbuffers} field (defined above), and should not
  1232. exceed @code{STARPU_NMAXBUFS}.
  1233. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1234. option when configuring StarPU.
  1235. @item @code{struct starpu_perfmodel *model} (optional)
  1236. This is a pointer to the task duration performance model associated to this
  1237. codelet. This optional field is ignored when set to @code{NULL} or
  1238. when its @code{symbol} field is not set.
  1239. @item @code{struct starpu_perfmodel *power_model} (optional)
  1240. This is a pointer to the task power consumption performance model associated
  1241. to this codelet. This optional field is ignored when set to
  1242. @code{NULL} or when its @code{symbol} field is not set.
  1243. In the case of parallel codelets, this has to account for all processing units
  1244. involved in the parallel execution.
  1245. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1246. Statistics collected at runtime: this is filled by StarPU and should not be
  1247. accessed directly, but for example by calling the
  1248. @code{starpu_display_codelet_stats} function (See
  1249. @ref{starpu_display_codelet_stats} for details).
  1250. @item @code{const char *name} (optional)
  1251. Define the name of the codelet. This can be useful for debugging purposes.
  1252. @end table
  1253. @end deftp
  1254. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1255. Initialize @var{cl} with default values. Codelets should preferably be
  1256. initialized statically as shown in @ref{Defining a Codelet}. However
  1257. such a initialisation is not always possible, e.g. when using C++.
  1258. @end deftypefun
  1259. @deftp {Data Type} {enum starpu_task_status}
  1260. State of a task, can be either of
  1261. @table @asis
  1262. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1263. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1264. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1265. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1266. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1267. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1268. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1269. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1270. @end table
  1271. @end deftp
  1272. @deftp {Data Type} {struct starpu_buffer_descr}
  1273. This type is used to describe a data handle along with an
  1274. access mode.
  1275. @table @asis
  1276. @item @code{starpu_data_handle_t handle} describes a data,
  1277. @item @code{enum starpu_access_mode mode} describes its access mode
  1278. @end table
  1279. @end deftp
  1280. @deftp {Data Type} {struct starpu_task}
  1281. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1282. processing units managed by StarPU. It instantiates a codelet. It can either be
  1283. allocated dynamically with the @code{starpu_task_create} method, or declared
  1284. statically. In the latter case, the programmer has to zero the
  1285. @code{starpu_task} structure and to fill the different fields properly. The
  1286. indicated default values correspond to the configuration of a task allocated
  1287. with @code{starpu_task_create}.
  1288. @table @asis
  1289. @item @code{struct starpu_codelet *cl}
  1290. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1291. describes where the kernel should be executed, and supplies the appropriate
  1292. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1293. such empty tasks can be useful for synchronization purposes.
  1294. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1295. This field has been made deprecated. One should use instead the
  1296. @code{handles} field to specify the handles to the data accessed by
  1297. the task. The access modes are now defined in the @code{mode} field of
  1298. the @code{struct starpu_codelet cl} field defined above.
  1299. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1300. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1301. to the different pieces of data accessed by the task. The number
  1302. of entries in this array must be specified in the @code{nbuffers} field of the
  1303. @code{struct starpu_codelet} structure, and should not exceed
  1304. @code{STARPU_NMAXBUFS}.
  1305. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1306. option when configuring StarPU.
  1307. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1308. The actual data pointers to the memory node where execution will happen, managed
  1309. by the DSM.
  1310. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1311. This pointer is passed to the codelet through the second argument
  1312. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1313. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1314. argument.
  1315. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1316. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1317. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1318. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1319. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1320. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1321. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1322. codelets, where the @code{cl_arg} pointer is given as such.
  1323. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1324. This is a function pointer of prototype @code{void (*f)(void *)} which
  1325. specifies a possible callback. If this pointer is non-null, the callback
  1326. function is executed @emph{on the host} after the execution of the task. Tasks
  1327. which depend on it might already be executing. The callback is passed the
  1328. value contained in the @code{callback_arg} field. No callback is executed if the
  1329. field is set to @code{NULL}.
  1330. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1331. This is the pointer passed to the callback function. This field is ignored if
  1332. the @code{callback_func} is set to @code{NULL}.
  1333. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1334. If set, this flag indicates that the task should be associated with the tag
  1335. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1336. with the task and to express task dependencies easily.
  1337. @item @code{starpu_tag_t tag_id}
  1338. This fields contains the tag associated to the task if the @code{use_tag} field
  1339. was set, it is ignored otherwise.
  1340. @item @code{unsigned synchronous}
  1341. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1342. returns only when the task has been executed (or if no worker is able to
  1343. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1344. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1345. This field indicates a level of priority for the task. This is an integer value
  1346. that must be set between the return values of the
  1347. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1348. and that of the @code{starpu_sched_get_max_priority} for the most important
  1349. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1350. are provided for convenience and respectively returns value of
  1351. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1352. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1353. order to allow static task initialization. Scheduling strategies that take
  1354. priorities into account can use this parameter to take better scheduling
  1355. decisions, but the scheduling policy may also ignore it.
  1356. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1357. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1358. task to the worker specified by the @code{workerid} field.
  1359. @item @code{unsigned workerid} (optional)
  1360. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1361. which is the identifier of the worker that should process this task (as
  1362. returned by @code{starpu_worker_get_id}). This field is ignored if
  1363. @code{execute_on_a_specific_worker} field is set to 0.
  1364. @item @code{starpu_task_bundle_t bundle} (optional)
  1365. The bundle that includes this task. If no bundle is used, this should be NULL.
  1366. @item @code{int detach} (optional) (default: @code{1})
  1367. If this flag is set, it is not possible to synchronize with the task
  1368. by the means of @code{starpu_task_wait} later on. Internal data structures
  1369. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1370. flag is not set.
  1371. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1372. If this flag is set, the task structure will automatically be freed, either
  1373. after the execution of the callback if the task is detached, or during
  1374. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1375. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1376. called explicitly. Setting this flag for a statically allocated task structure
  1377. will result in undefined behaviour. The flag is set to 1 when the task is
  1378. created by calling @code{starpu_task_create()}. Note that
  1379. @code{starpu_task_wait_for_all} will not free any task.
  1380. @item @code{int regenerate} (optional)
  1381. If this flag is set, the task will be re-submitted to StarPU once it has been
  1382. executed. This flag must not be set if the destroy flag is set too.
  1383. @item @code{enum starpu_task_status status} (optional)
  1384. Current state of the task.
  1385. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1386. Profiling information for the task.
  1387. @item @code{double predicted} (output field)
  1388. Predicted duration of the task. This field is only set if the scheduling
  1389. strategy used performance models.
  1390. @item @code{double predicted_transfer} (optional)
  1391. Predicted data transfer duration for the task in microseconds. This field is
  1392. only valid if the scheduling strategy uses performance models.
  1393. @item @code{struct starpu_task *prev}
  1394. A pointer to the previous task. This should only be used by StarPU.
  1395. @item @code{struct starpu_task *next}
  1396. A pointer to the next task. This should only be used by StarPU.
  1397. @item @code{unsigned int mf_skip}
  1398. This is only used for tasks that use multiformat handle. This should only be
  1399. used by StarPU.
  1400. @item @code{void *starpu_private}
  1401. This is private to StarPU, do not modify. If the task is allocated by hand
  1402. (without starpu_task_create), this field should be set to NULL.
  1403. @item @code{int magic}
  1404. This field is set when initializing a task. It prevents a task from being
  1405. submitted if it has not been properly initialized.
  1406. @end table
  1407. @end deftp
  1408. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1409. Initialize @var{task} with default values. This function is implicitly
  1410. called by @code{starpu_task_create}. By default, tasks initialized with
  1411. @code{starpu_task_init} must be deinitialized explicitly with
  1412. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1413. using @code{STARPU_TASK_INITIALIZER} defined below.
  1414. @end deftypefun
  1415. @defmac STARPU_TASK_INITIALIZER
  1416. It is possible to initialize statically allocated tasks with this
  1417. value. This is equivalent to initializing a starpu_task structure with
  1418. the @code{starpu_task_init} function defined above.
  1419. @end defmac
  1420. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1421. Allocate a task structure and initialize it with default values. Tasks
  1422. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1423. task is terminated. This means that the task pointer can not be used any more
  1424. once the task is submitted, since it can be executed at any time (unless
  1425. dependencies make it wait) and thus freed at any time.
  1426. If the destroy flag is explicitly unset, the resources used
  1427. by the task have to be freed by calling
  1428. @code{starpu_task_destroy}.
  1429. @end deftypefun
  1430. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1431. Release all the structures automatically allocated to execute @var{task}, but
  1432. not the task structure itself and values set by the user remain unchanged.
  1433. It is thus useful for statically allocated tasks for instance.
  1434. It is also useful when the user wants to execute the same operation several
  1435. times with as least overhead as possible.
  1436. It is called automatically by @code{starpu_task_destroy}.
  1437. It has to be called only after explicitly waiting for the task or after
  1438. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1439. still manipulates the task after calling the callback).
  1440. @end deftypefun
  1441. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1442. Free the resource allocated during @code{starpu_task_create} and
  1443. associated with @var{task}. This function is already called automatically
  1444. after the execution of a task when the @code{destroy} flag of the
  1445. @code{starpu_task} structure is set, which is the default for tasks created by
  1446. @code{starpu_task_create}. Calling this function on a statically allocated task
  1447. results in an undefined behaviour.
  1448. @end deftypefun
  1449. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1450. This function blocks until @var{task} has been executed. It is not possible to
  1451. synchronize with a task more than once. It is not possible to wait for
  1452. synchronous or detached tasks.
  1453. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1454. indicates that the specified task was either synchronous or detached.
  1455. @end deftypefun
  1456. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1457. This function submits @var{task} to StarPU. Calling this function does
  1458. not mean that the task will be executed immediately as there can be data or task
  1459. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1460. scheduling this task with respect to such dependencies.
  1461. This function returns immediately if the @code{synchronous} field of the
  1462. @code{starpu_task} structure was set to 0, and block until the termination of
  1463. the task otherwise. It is also possible to synchronize the application with
  1464. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1465. function for instance.
  1466. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1467. means that there is no worker able to process this task (e.g. there is no GPU
  1468. available and this task is only implemented for CUDA devices).
  1469. starpu_task_submit() can be called from anywhere, including codelet
  1470. functions and callbacks, provided that the @code{synchronous} field of the
  1471. @code{starpu_task} structure is left to 0.
  1472. @end deftypefun
  1473. @deftypefun int starpu_task_wait_for_all (void)
  1474. This function blocks until all the tasks that were submitted are terminated. It
  1475. does not destroy these tasks.
  1476. @end deftypefun
  1477. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1478. This function returns the task currently executed by the worker, or
  1479. NULL if it is called either from a thread that is not a task or simply
  1480. because there is no task being executed at the moment.
  1481. @end deftypefun
  1482. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1483. @anchor{starpu_display_codelet_stats}
  1484. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1485. @end deftypefun
  1486. @deftypefun int starpu_task_wait_for_no_ready (void)
  1487. This function waits until there is no more ready task.
  1488. @end deftypefun
  1489. @c Callbacks: what can we put in callbacks ?
  1490. @node Explicit Dependencies
  1491. @section Explicit Dependencies
  1492. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1493. Declare task dependencies between a @var{task} and an array of tasks of length
  1494. @var{ndeps}. This function must be called prior to the submission of the task,
  1495. but it may called after the submission or the execution of the tasks in the
  1496. array, provided the tasks are still valid (ie. they were not automatically
  1497. destroyed). Calling this function on a task that was already submitted or with
  1498. an entry of @var{task_array} that is not a valid task anymore results in an
  1499. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1500. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1501. same task, in this case, the dependencies are added. It is possible to have
  1502. redundancy in the task dependencies.
  1503. @end deftypefun
  1504. @deftp {Data Type} {starpu_tag_t}
  1505. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1506. dependencies between tasks by the means of those tags. To do so, fill the
  1507. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1508. be arbitrary) and set the @code{use_tag} field to 1.
  1509. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1510. not be started until the tasks which holds the declared dependency tags are
  1511. completed.
  1512. @end deftp
  1513. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1514. Specify the dependencies of the task identified by tag @var{id}. The first
  1515. argument specifies the tag which is configured, the second argument gives the
  1516. number of tag(s) on which @var{id} depends. The following arguments are the
  1517. tags which have to be terminated to unlock the task.
  1518. This function must be called before the associated task is submitted to StarPU
  1519. with @code{starpu_task_submit}.
  1520. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1521. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1522. typically need to be explicitly casted. Using the
  1523. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1524. @cartouche
  1525. @smallexample
  1526. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1527. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1528. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1529. @end smallexample
  1530. @end cartouche
  1531. @end deftypefun
  1532. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1533. This function is similar to @code{starpu_tag_declare_deps}, except
  1534. that its does not take a variable number of arguments but an array of
  1535. tags of size @var{ndeps}.
  1536. @cartouche
  1537. @smallexample
  1538. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1539. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1540. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1541. @end smallexample
  1542. @end cartouche
  1543. @end deftypefun
  1544. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1545. This function blocks until the task associated to tag @var{id} has been
  1546. executed. This is a blocking call which must therefore not be called within
  1547. tasks or callbacks, but only from the application directly. It is possible to
  1548. synchronize with the same tag multiple times, as long as the
  1549. @code{starpu_tag_remove} function is not called. Note that it is still
  1550. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1551. data structure was freed (e.g. if the @code{destroy} flag of the
  1552. @code{starpu_task} was enabled).
  1553. @end deftypefun
  1554. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1555. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1556. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1557. terminated.
  1558. @end deftypefun
  1559. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1560. This function can be used to clear the "already notified" status
  1561. of a tag which is not associated with a task. Before that, calling
  1562. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1563. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1564. successors.
  1565. @end deftypefun
  1566. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1567. This function releases the resources associated to tag @var{id}. It can be
  1568. called once the corresponding task has been executed and when there is
  1569. no other tag that depend on this tag anymore.
  1570. @end deftypefun
  1571. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1572. This function explicitly unlocks tag @var{id}. It may be useful in the
  1573. case of applications which execute part of their computation outside StarPU
  1574. tasks (e.g. third-party libraries). It is also provided as a
  1575. convenient tool for the programmer, for instance to entirely construct the task
  1576. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1577. called several times on the same tag, notification will be done only on first
  1578. call, thus implementing "OR" dependencies, until the tag is restarted using
  1579. @code{starpu_tag_restart}.
  1580. @end deftypefun
  1581. @node Implicit Data Dependencies
  1582. @section Implicit Data Dependencies
  1583. In this section, we describe how StarPU makes it possible to insert implicit
  1584. task dependencies in order to enforce sequential data consistency. When this
  1585. data consistency is enabled on a specific data handle, any data access will
  1586. appear as sequentially consistent from the application. For instance, if the
  1587. application submits two tasks that access the same piece of data in read-only
  1588. mode, and then a third task that access it in write mode, dependencies will be
  1589. added between the two first tasks and the third one. Implicit data dependencies
  1590. are also inserted in the case of data accesses from the application.
  1591. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1592. Set the default sequential consistency flag. If a non-zero value is passed, a
  1593. sequential data consistency will be enforced for all handles registered after
  1594. this function call, otherwise it is disabled. By default, StarPU enables
  1595. sequential data consistency. It is also possible to select the data consistency
  1596. mode of a specific data handle with the
  1597. @code{starpu_data_set_sequential_consistency_flag} function.
  1598. @end deftypefun
  1599. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1600. Return the default sequential consistency flag
  1601. @end deftypefun
  1602. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1603. Sets the data consistency mode associated to a data handle. The consistency
  1604. mode set using this function has the priority over the default mode which can
  1605. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1606. @end deftypefun
  1607. @node Performance Model API
  1608. @section Performance Model API
  1609. @deftp {Data Type} {enum starpu_perf_archtype}
  1610. Enumerates the various types of architectures.
  1611. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1612. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1613. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1614. @table @asis
  1615. @item @code{STARPU_CPU_DEFAULT}
  1616. @item @code{STARPU_CUDA_DEFAULT}
  1617. @item @code{STARPU_OPENCL_DEFAULT}
  1618. @item @code{STARPU_GORDON_DEFAULT}
  1619. @end table
  1620. @end deftp
  1621. @deftp {Data Type} {enum starpu_perfmodel_type}
  1622. The possible values are:
  1623. @table @asis
  1624. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1625. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1626. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1627. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1628. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1629. @end table
  1630. @end deftp
  1631. @deftp {Data Type} {struct starpu_perfmodel}
  1632. @anchor{struct starpu_perfmodel}
  1633. contains all information about a performance model. At least the
  1634. @code{type} and @code{symbol} fields have to be filled when defining a
  1635. performance model for a codelet. For compatibility, make sure to initialize the
  1636. whole structure to zero, either by using explicit memset, or by letting the
  1637. compiler implicitly do it in e.g. static storage case.
  1638. If not provided, other fields have to be zero.
  1639. @table @asis
  1640. @item @code{type}
  1641. is the type of performance model @code{enum starpu_perfmodel_type}:
  1642. @code{STARPU_HISTORY_BASED},
  1643. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1644. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1645. @code{per_arch} has to be filled with functions which return the cost in
  1646. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1647. a function that returns the cost in micro-seconds on a CPU, timing on other
  1648. archs will be determined by multiplying by an arch-specific factor.
  1649. @item @code{const char *symbol}
  1650. is the symbol name for the performance model, which will be used as
  1651. file name to store the model. It must be set otherwise the model will
  1652. be ignored.
  1653. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1654. This field is deprecated. Use instead the @code{cost_function} field.
  1655. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1656. Used by @code{STARPU_COMMON}: takes a task and
  1657. implementation number, and must return a task duration estimation in micro-seconds.
  1658. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1659. Used by @code{STARPU_HISTORY_BASED} and
  1660. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1661. implementation number, and returns the size to be used as index for
  1662. history and regression.
  1663. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1664. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1665. starpu_per_arch_perfmodel} structures.
  1666. @item @code{unsigned is_loaded}
  1667. Whether the performance model is already loaded from the disk.
  1668. @item @code{unsigned benchmarking}
  1669. Whether the performance model is still being calibrated.
  1670. @item @code{pthread_rwlock_t model_rwlock}
  1671. Lock to protect concurrency between loading from disk (W), updating the values
  1672. (W), and making a performance estimation (R).
  1673. @end table
  1674. @end deftp
  1675. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1676. @table @asis
  1677. @item @code{double sumlny} sum of ln(measured)
  1678. @item @code{double sumlnx} sum of ln(size)
  1679. @item @code{double sumlnx2} sum of ln(size)^2
  1680. @item @code{unsigned long minx} minimum size
  1681. @item @code{unsigned long maxx} maximum size
  1682. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1683. @item @code{double alpha} estimated = alpha * size ^ beta
  1684. @item @code{double beta}
  1685. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1686. @item @code{double a, b, c} estimaed = a size ^b + c
  1687. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1688. @item @code{unsigned nsample} number of sample values for non-linear regression
  1689. @end table
  1690. @end deftp
  1691. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1692. contains information about the performance model of a given arch.
  1693. @table @asis
  1694. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1695. This field is deprecated. Use instead the @code{cost_function} field.
  1696. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1697. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1698. target arch and implementation number (as mere conveniency, since the array
  1699. is already indexed by these), and must return a task duration estimation in
  1700. micro-seconds.
  1701. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1702. starpu_perf_archtype arch, unsigned nimpl)}
  1703. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1704. case it depends on the architecture-specific implementation.
  1705. @item @code{struct starpu_htbl32_node *history}
  1706. The history of performance measurements.
  1707. @item @code{struct starpu_perfmodel_history_list *list}
  1708. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1709. records all execution history measures.
  1710. @item @code{struct starpu_perfmodel_regression_model regression}
  1711. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1712. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1713. regression.
  1714. @end table
  1715. @end deftp
  1716. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1717. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$HOME/.starpu} (@code{$USERPROFILE/.starpu} in windows environments).
  1718. @end deftypefun
  1719. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1720. returns the path to the debugging information for the performance model.
  1721. @end deftypefun
  1722. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1723. returns the architecture name for @var{arch}.
  1724. @end deftypefun
  1725. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1726. returns the architecture type of a given worker.
  1727. @end deftypefun
  1728. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1729. prints a list of all performance models on @var{output}.
  1730. @end deftypefun
  1731. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1732. todo
  1733. @end deftypefun
  1734. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1735. todo
  1736. @end deftypefun
  1737. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1738. prints a matrix of bus bandwidths on @var{f}.
  1739. @end deftypefun
  1740. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1741. prints the affinity devices on @var{f}.
  1742. @end deftypefun
  1743. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1744. prints a description of the topology on @var{f}.
  1745. @end deftypefun
  1746. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1747. This feeds the performance model @var{model} with an explicit measurement
  1748. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1749. useful when the application already has an existing set of measurements done
  1750. in good conditions, that StarPU could benefit from instead of doing on-line
  1751. measurements. And example of use can be see in @ref{Performance model example}.
  1752. @end deftypefun
  1753. @node Profiling API
  1754. @section Profiling API
  1755. @deftypefun int starpu_profiling_status_set (int @var{status})
  1756. Thie function sets the profiling status. Profiling is activated by passing
  1757. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1758. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1759. resets all profiling measurements. When profiling is enabled, the
  1760. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1761. to a valid @code{struct starpu_task_profiling_info} structure containing
  1762. information about the execution of the task.
  1763. Negative return values indicate an error, otherwise the previous status is
  1764. returned.
  1765. @end deftypefun
  1766. @deftypefun int starpu_profiling_status_get (void)
  1767. Return the current profiling status or a negative value in case there was an error.
  1768. @end deftypefun
  1769. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1770. This function sets the ID used for profiling trace filename
  1771. @end deftypefun
  1772. @deftp {Data Type} {struct starpu_task_profiling_info}
  1773. This structure contains information about the execution of a task. It is
  1774. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1775. structure if profiling was enabled. The different fields are:
  1776. @table @asis
  1777. @item @code{struct timespec submit_time}
  1778. Date of task submission (relative to the initialization of StarPU).
  1779. @item @code{struct timespec push_start_time}
  1780. Time when the task was submitted to the scheduler.
  1781. @item @code{struct timespec push_end_time}
  1782. Time when the scheduler finished with the task submission.
  1783. @item @code{struct timespec pop_start_time}
  1784. Time when the scheduler started to be requested for a task, and eventually gave
  1785. that task.
  1786. @item @code{struct timespec pop_end_time}
  1787. Time when the scheduler finished providing the task for execution.
  1788. @item @code{struct timespec acquire_data_start_time}
  1789. Time when the worker started fetching input data.
  1790. @item @code{struct timespec acquire_data_end_time}
  1791. Time when the worker finished fetching input data.
  1792. @item @code{struct timespec start_time}
  1793. Date of task execution beginning (relative to the initialization of StarPU).
  1794. @item @code{struct timespec end_time}
  1795. Date of task execution termination (relative to the initialization of StarPU).
  1796. @item @code{struct timespec release_data_start_time}
  1797. Time when the worker started releasing data.
  1798. @item @code{struct timespec release_data_end_time}
  1799. Time when the worker finished releasing data.
  1800. @item @code{struct timespec callback_start_time}
  1801. Time when the worker started the application callback for the task.
  1802. @item @code{struct timespec callback_end_time}
  1803. Time when the worker finished the application callback for the task.
  1804. @item @code{workerid}
  1805. Identifier of the worker which has executed the task.
  1806. @item @code{uint64_t used_cycles}
  1807. Number of cycles used by the task, only available in the MoviSim
  1808. @item @code{uint64_t stall_cycles}
  1809. Number of cycles stalled within the task, only available in the MoviSim
  1810. @item @code{double power_consumed}
  1811. Power consumed by the task, only available in the MoviSim
  1812. @end table
  1813. @end deftp
  1814. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1815. This structure contains the profiling information associated to a
  1816. worker. The different fields are:
  1817. @table @asis
  1818. @item @code{struct timespec start_time}
  1819. Starting date for the reported profiling measurements.
  1820. @item @code{struct timespec total_time}
  1821. Duration of the profiling measurement interval.
  1822. @item @code{struct timespec executing_time}
  1823. Time spent by the worker to execute tasks during the profiling measurement interval.
  1824. @item @code{struct timespec sleeping_time}
  1825. Time spent idling by the worker during the profiling measurement interval.
  1826. @item @code{int executed_tasks}
  1827. Number of tasks executed by the worker during the profiling measurement interval.
  1828. @item @code{uint64_t used_cycles}
  1829. Number of cycles used by the worker, only available in the MoviSim
  1830. @item @code{uint64_t stall_cycles}
  1831. Number of cycles stalled within the worker, only available in the MoviSim
  1832. @item @code{double power_consumed}
  1833. Power consumed by the worker, only available in the MoviSim
  1834. @end table
  1835. @end deftp
  1836. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1837. Get the profiling info associated to the worker identified by @var{workerid},
  1838. and reset the profiling measurements. If the @var{worker_info} argument is
  1839. NULL, only reset the counters associated to worker @var{workerid}.
  1840. Upon successful completion, this function returns 0. Otherwise, a negative
  1841. value is returned.
  1842. @end deftypefun
  1843. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1844. The different fields are:
  1845. @table @asis
  1846. @item @code{struct timespec start_time}
  1847. Time of bus profiling startup.
  1848. @item @code{struct timespec total_time}
  1849. Total time of bus profiling.
  1850. @item @code{int long long transferred_bytes}
  1851. Number of bytes transferred during profiling.
  1852. @item @code{int transfer_count}
  1853. Number of transfers during profiling.
  1854. @end table
  1855. @end deftp
  1856. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1857. Get the profiling info associated to the worker designated by @var{workerid},
  1858. and reset the profiling measurements. If worker_info is NULL, only reset the
  1859. counters.
  1860. @end deftypefun
  1861. @deftypefun int starpu_bus_get_count (void)
  1862. Return the number of buses in the machine.
  1863. @end deftypefun
  1864. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1865. Return the identifier of the bus between @var{src} and @var{dst}
  1866. @end deftypefun
  1867. @deftypefun int starpu_bus_get_src (int @var{busid})
  1868. Return the source point of bus @var{busid}
  1869. @end deftypefun
  1870. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1871. Return the destination point of bus @var{busid}
  1872. @end deftypefun
  1873. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1874. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1875. @end deftypefun
  1876. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1877. Converts the given timespec @var{ts} into microseconds.
  1878. @end deftypefun
  1879. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1880. Displays statistics about the bus on stderr.
  1881. @end deftypefun
  1882. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1883. Displays statistics about the workers on stderr.
  1884. @end deftypefun
  1885. @node CUDA extensions
  1886. @section CUDA extensions
  1887. @defmac STARPU_USE_CUDA
  1888. This macro is defined when StarPU has been installed with CUDA
  1889. support. It should be used in your code to detect the availability of
  1890. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1891. @end defmac
  1892. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1893. This function gets the current worker's CUDA stream.
  1894. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1895. function is only provided for convenience so that programmers can easily use
  1896. asynchronous operations within codelets without having to create a stream by
  1897. hand. Note that the application is not forced to use the stream provided by
  1898. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1899. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1900. the likelihood of having all transfers overlapped.
  1901. @end deftypefun
  1902. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1903. This function returns a pointer to device properties for worker @var{workerid}
  1904. (assumed to be a CUDA worker).
  1905. @end deftypefun
  1906. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1907. Return the size of the global memory of CUDA device @var{devid}.
  1908. @end deftypefun
  1909. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1910. Report a CUDA error.
  1911. @end deftypefun
  1912. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1913. Calls starpu_cuda_report_error, passing the current function, file and line
  1914. position.
  1915. @end defmac
  1916. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  1917. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  1918. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  1919. The function first tries to copy the data asynchronous (unless
  1920. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  1921. @var{stream} is @code{NULL}, it copies the data synchronously.
  1922. The function returns @code{-EAGAIN} if the asynchronous copy was
  1923. successfull. It returns 0 if the synchronous copy was successful, or
  1924. fails otherwise.
  1925. @end deftypefun
  1926. @deftypefun void starpu_cuda_set_device (int @var{devid})
  1927. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  1928. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  1929. the @code{starpu_conf} structure.
  1930. @end deftypefun
  1931. @deftypefun void starpu_helper_cublas_init (void)
  1932. This function initializes CUBLAS on every CUDA device.
  1933. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1934. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1935. controlled by StarPU. This call blocks until CUBLAS has been properly
  1936. initialized on every device.
  1937. @end deftypefun
  1938. @deftypefun void starpu_helper_cublas_shutdown (void)
  1939. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1940. @end deftypefun
  1941. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1942. Report a cublas error.
  1943. @end deftypefun
  1944. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1945. Calls starpu_cublas_report_error, passing the current function, file and line
  1946. position.
  1947. @end defmac
  1948. @node OpenCL extensions
  1949. @section OpenCL extensions
  1950. @menu
  1951. * Writing OpenCL kernels:: Writing OpenCL kernels
  1952. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1953. * Loading OpenCL kernels:: Loading OpenCL kernels
  1954. * OpenCL statistics:: Collecting statistics from OpenCL
  1955. * OpenCL utilities:: Utilities for OpenCL
  1956. @end menu
  1957. @defmac STARPU_USE_OPENCL
  1958. This macro is defined when StarPU has been installed with OpenCL
  1959. support. It should be used in your code to detect the availability of
  1960. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1961. @end defmac
  1962. @node Writing OpenCL kernels
  1963. @subsection Writing OpenCL kernels
  1964. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1965. Return the size of global device memory in bytes.
  1966. @end deftypefun
  1967. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1968. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1969. @end deftypefun
  1970. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1971. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1972. @end deftypefun
  1973. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1974. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1975. @end deftypefun
  1976. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1977. Return the context of the current worker.
  1978. @end deftypefun
  1979. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1980. Return the computation kernel command queue of the current worker.
  1981. @end deftypefun
  1982. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1983. Sets the arguments of a given kernel. The list of arguments must be given as
  1984. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1985. The last argument must be 0. Returns the number of arguments that were
  1986. successfully set. In case of failure, returns the id of the argument
  1987. that could not be set and @var{err} is set to the error returned by
  1988. OpenCL. Otherwise, returns the number of arguments that were set.
  1989. @cartouche
  1990. @smallexample
  1991. int n;
  1992. cl_int err;
  1993. cl_kernel kernel;
  1994. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  1995. sizeof(foo), &foo,
  1996. sizeof(bar), &bar,
  1997. 0);
  1998. if (n != 2)
  1999. fprintf(stderr, "Error : %d\n", err);
  2000. @end smallexample
  2001. @end cartouche
  2002. @end deftypefun
  2003. @node Compiling OpenCL kernels
  2004. @subsection Compiling OpenCL kernels
  2005. Source codes for OpenCL kernels can be stored in a file or in a
  2006. string. StarPU provides functions to build the program executable for
  2007. each available OpenCL device as a @code{cl_program} object. This
  2008. program executable can then be loaded within a specific queue as
  2009. explained in the next section. These are only helpers, Applications
  2010. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2011. use (e.g. different programs on the different OpenCL devices, for
  2012. relocation purpose for instance).
  2013. @deftp {Data Type} {struct starpu_opencl_program}
  2014. Stores the OpenCL programs as compiled for the different OpenCL devices.
  2015. @table @asis
  2016. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2017. Stores each program for each OpenCL device.
  2018. @end table
  2019. @end deftp
  2020. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2021. @anchor{starpu_opencl_load_opencl_from_file}
  2022. This function compiles an OpenCL source code stored in a file.
  2023. @end deftypefun
  2024. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2025. This function compiles an OpenCL source code stored in a string.
  2026. @end deftypefun
  2027. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2028. This function unloads an OpenCL compiled code.
  2029. @end deftypefun
  2030. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2031. Store the contents of the file @var{source_file_name} in the buffer
  2032. @var{opencl_program_source}. The file @var{source_file_name} can be
  2033. located in the current directory, or in the directory specified by the
  2034. environment variable @code{STARPU_OPENCL_PROGRAM_DIR}, or in the
  2035. directory @code{share/starpu/opencl} of the installation directory of
  2036. StarPU, or in the source directory of StarPU.
  2037. When the file is found, @code{located_file_name} is the full name of
  2038. the file as it has been located on the system, @code{located_dir_name}
  2039. the directory where it has been located. Otherwise, they are both set
  2040. to the empty string.
  2041. @end deftypefun
  2042. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2043. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2044. with the given options @code{build_options} and stores the result in
  2045. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2046. filename as @code{source_file_name} (@code{$USERPROFILE/.starpu/opencl} in
  2047. windows environments). The compilation is done for every
  2048. OpenCL device, and the filename is suffixed with the vendor id and the
  2049. device id of the OpenCL device.
  2050. @end deftypefun
  2051. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2052. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2053. with the given options @code{build_options} and stores the result in
  2054. the directory @code{$STARPU_HOME/.starpu/opencl}
  2055. (@code{$USERPROFILE/.starpu/opencl} in windows environments) with the filename
  2056. @code{file_name}. The compilation is done for every
  2057. OpenCL device, and the filename is suffixed with the vendor id and the
  2058. device id of the OpenCL device.
  2059. @end deftypefun
  2060. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2061. Compile the binary OpenCL kernel identified with @var{id}. For every
  2062. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2063. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2064. @end deftypefun
  2065. @node Loading OpenCL kernels
  2066. @subsection Loading OpenCL kernels
  2067. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2068. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2069. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2070. @var{kernel_name}
  2071. @end deftypefun
  2072. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2073. Release the given @var{kernel}, to be called after kernel execution.
  2074. @end deftypefun
  2075. @node OpenCL statistics
  2076. @subsection OpenCL statistics
  2077. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2078. This function allows to collect statistics on a kernel execution.
  2079. After termination of the kernels, the OpenCL codelet should call this function
  2080. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2081. collect statistics about the kernel execution (used cycles, consumed power).
  2082. @end deftypefun
  2083. @node OpenCL utilities
  2084. @subsection OpenCL utilities
  2085. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2086. Return the error message in English corresponding to @var{status}, an
  2087. OpenCL error code.
  2088. @end deftypefun
  2089. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2090. Given a valid error @var{status}, prints the corresponding error message on
  2091. stdout, along with the given function name @var{func}, the given filename
  2092. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2093. @end deftypefun
  2094. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2095. Call the function @code{starpu_opencl_display_error} with the given
  2096. error @var{status}, the current function name, current file and line
  2097. number, and a empty message.
  2098. @end defmac
  2099. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2100. Call the function @code{starpu_opencl_display_error} and abort.
  2101. @end deftypefun
  2102. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2103. Call the function @code{starpu_opencl_report_error} with the given
  2104. error @var{status}, with the current function name, current file and
  2105. line number, and a empty message.
  2106. @end defmac
  2107. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2108. Call the function @code{starpu_opencl_report_error} with the given
  2109. message and the given error @var{status}, with the current function
  2110. name, current file and line number.
  2111. @end defmac
  2112. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2113. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2114. valid combination of cl_mem_flags values.
  2115. @end deftypefun
  2116. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2117. Copy @var{size} bytes from the given @var{ptr} on
  2118. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  2119. @var{offset} is the offset, in bytes, in @var{buffer}.
  2120. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2121. synchronised before returning. If non NULL, @var{event} can be used
  2122. after the call to wait for this particular copy to complete.
  2123. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2124. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2125. was successful, or to 0 if event was NULL.
  2126. @end deftypefun
  2127. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2128. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2129. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  2130. @var{offset} is the offset, in bytes, in @var{buffer}.
  2131. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2132. synchronised before returning. If non NULL, @var{event} can be used
  2133. after the call to wait for this particular copy to complete.
  2134. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2135. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2136. was successful, or to 0 if event was NULL.
  2137. @end deftypefun
  2138. @node Cell extensions
  2139. @section Cell extensions
  2140. nothing yet.
  2141. @node Miscellaneous helpers
  2142. @section Miscellaneous helpers
  2143. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2144. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2145. The @var{asynchronous} parameter indicates whether the function should
  2146. block or not. In the case of an asynchronous call, it is possible to
  2147. synchronize with the termination of this operation either by the means of
  2148. implicit dependencies (if enabled) or by calling
  2149. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2150. this callback function is executed after the handle has been copied, and it is
  2151. given the @var{callback_arg} pointer as argument.
  2152. @end deftypefun
  2153. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2154. This function executes the given function on a subset of workers.
  2155. When calling this method, the offloaded function specified by the first argument is
  2156. executed by every StarPU worker that may execute the function.
  2157. The second argument is passed to the offloaded function.
  2158. The last argument specifies on which types of processing units the function
  2159. should be executed. Similarly to the @var{where} field of the
  2160. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2161. should be executed on every CUDA device and every CPU by passing
  2162. @code{STARPU_CPU|STARPU_CUDA}.
  2163. This function blocks until the function has been executed on every appropriate
  2164. processing units, so that it may not be called from a callback function for
  2165. instance.
  2166. @end deftypefun