| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 | 
							- /* dtpsv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dtpsv_(char *uplo, char *trans, char *diag, integer *n, 
 
- 	doublereal *ap, doublereal *x, integer *incx)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, j, k, kk, ix, jx, kx, info;
 
-     doublereal temp;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     logical nounit;
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTPSV  solves one of the systems of equations */
 
- /*     A*x = b,   or   A'*x = b, */
 
- /*  where b and x are n element vectors and A is an n by n unit, or */
 
- /*  non-unit, upper or lower triangular matrix, supplied in packed form. */
 
- /*  No test for singularity or near-singularity is included in this */
 
- /*  routine. Such tests must be performed before calling this routine. */
 
- /*  Arguments */
 
- /*  ========== */
 
- /*  UPLO   - CHARACTER*1. */
 
- /*           On entry, UPLO specifies whether the matrix is an upper or */
 
- /*           lower triangular matrix as follows: */
 
- /*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */
 
- /*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */
 
- /*           Unchanged on exit. */
 
- /*  TRANS  - CHARACTER*1. */
 
- /*           On entry, TRANS specifies the equations to be solved as */
 
- /*           follows: */
 
- /*              TRANS = 'N' or 'n'   A*x = b. */
 
- /*              TRANS = 'T' or 't'   A'*x = b. */
 
- /*              TRANS = 'C' or 'c'   A'*x = b. */
 
- /*           Unchanged on exit. */
 
- /*  DIAG   - CHARACTER*1. */
 
- /*           On entry, DIAG specifies whether or not A is unit */
 
- /*           triangular as follows: */
 
- /*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */
 
- /*              DIAG = 'N' or 'n'   A is not assumed to be unit */
 
- /*                                  triangular. */
 
- /*           Unchanged on exit. */
 
- /*  N      - INTEGER. */
 
- /*           On entry, N specifies the order of the matrix A. */
 
- /*           N must be at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  AP     - DOUBLE PRECISION array of DIMENSION at least */
 
- /*           ( ( n*( n + 1 ) )/2 ). */
 
- /*           Before entry with  UPLO = 'U' or 'u', the array AP must */
 
- /*           contain the upper triangular matrix packed sequentially, */
 
- /*           column by column, so that AP( 1 ) contains a( 1, 1 ), */
 
- /*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) */
 
- /*           respectively, and so on. */
 
- /*           Before entry with UPLO = 'L' or 'l', the array AP must */
 
- /*           contain the lower triangular matrix packed sequentially, */
 
- /*           column by column, so that AP( 1 ) contains a( 1, 1 ), */
 
- /*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) */
 
- /*           respectively, and so on. */
 
- /*           Note that when  DIAG = 'U' or 'u', the diagonal elements of */
 
- /*           A are not referenced, but are assumed to be unity. */
 
- /*           Unchanged on exit. */
 
- /*  X      - DOUBLE PRECISION array of dimension at least */
 
- /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
 
- /*           Before entry, the incremented array X must contain the n */
 
- /*           element right-hand side vector b. On exit, X is overwritten */
 
- /*           with the solution vector x. */
 
- /*  INCX   - INTEGER. */
 
- /*           On entry, INCX specifies the increment for the elements of */
 
- /*           X. INCX must not be zero. */
 
- /*           Unchanged on exit. */
 
- /*  Level 2 Blas routine. */
 
- /*  -- Written on 22-October-1986. */
 
- /*     Jack Dongarra, Argonne National Lab. */
 
- /*     Jeremy Du Croz, Nag Central Office. */
 
- /*     Sven Hammarling, Nag Central Office. */
 
- /*     Richard Hanson, Sandia National Labs. */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --x;
 
-     --ap;
 
-     /* Function Body */
 
-     info = 0;
 
-     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
 
- 	info = 1;
 
-     } else if (! lsame_(trans, "N") && ! lsame_(trans, 
 
- 	    "T") && ! lsame_(trans, "C")) {
 
- 	info = 2;
 
-     } else if (! lsame_(diag, "U") && ! lsame_(diag, 
 
- 	    "N")) {
 
- 	info = 3;
 
-     } else if (*n < 0) {
 
- 	info = 4;
 
-     } else if (*incx == 0) {
 
- 	info = 7;
 
-     }
 
-     if (info != 0) {
 
- 	xerbla_("DTPSV ", &info);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     nounit = lsame_(diag, "N");
 
- /*     Set up the start point in X if the increment is not unity. This */
 
- /*     will be  ( N - 1 )*INCX  too small for descending loops. */
 
-     if (*incx <= 0) {
 
- 	kx = 1 - (*n - 1) * *incx;
 
-     } else if (*incx != 1) {
 
- 	kx = 1;
 
-     }
 
- /*     Start the operations. In this version the elements of AP are */
 
- /*     accessed sequentially with one pass through AP. */
 
-     if (lsame_(trans, "N")) {
 
- /*        Form  x := inv( A )*x. */
 
- 	if (lsame_(uplo, "U")) {
 
- 	    kk = *n * (*n + 1) / 2;
 
- 	    if (*incx == 1) {
 
- 		for (j = *n; j >= 1; --j) {
 
- 		    if (x[j] != 0.) {
 
- 			if (nounit) {
 
- 			    x[j] /= ap[kk];
 
- 			}
 
- 			temp = x[j];
 
- 			k = kk - 1;
 
- 			for (i__ = j - 1; i__ >= 1; --i__) {
 
- 			    x[i__] -= temp * ap[k];
 
- 			    --k;
 
- /* L10: */
 
- 			}
 
- 		    }
 
- 		    kk -= j;
 
- /* L20: */
 
- 		}
 
- 	    } else {
 
- 		jx = kx + (*n - 1) * *incx;
 
- 		for (j = *n; j >= 1; --j) {
 
- 		    if (x[jx] != 0.) {
 
- 			if (nounit) {
 
- 			    x[jx] /= ap[kk];
 
- 			}
 
- 			temp = x[jx];
 
- 			ix = jx;
 
- 			i__1 = kk - j + 1;
 
- 			for (k = kk - 1; k >= i__1; --k) {
 
- 			    ix -= *incx;
 
- 			    x[ix] -= temp * ap[k];
 
- /* L30: */
 
- 			}
 
- 		    }
 
- 		    jx -= *incx;
 
- 		    kk -= j;
 
- /* L40: */
 
- 		}
 
- 	    }
 
- 	} else {
 
- 	    kk = 1;
 
- 	    if (*incx == 1) {
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    if (x[j] != 0.) {
 
- 			if (nounit) {
 
- 			    x[j] /= ap[kk];
 
- 			}
 
- 			temp = x[j];
 
- 			k = kk + 1;
 
- 			i__2 = *n;
 
- 			for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 			    x[i__] -= temp * ap[k];
 
- 			    ++k;
 
- /* L50: */
 
- 			}
 
- 		    }
 
- 		    kk += *n - j + 1;
 
- /* L60: */
 
- 		}
 
- 	    } else {
 
- 		jx = kx;
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    if (x[jx] != 0.) {
 
- 			if (nounit) {
 
- 			    x[jx] /= ap[kk];
 
- 			}
 
- 			temp = x[jx];
 
- 			ix = jx;
 
- 			i__2 = kk + *n - j;
 
- 			for (k = kk + 1; k <= i__2; ++k) {
 
- 			    ix += *incx;
 
- 			    x[ix] -= temp * ap[k];
 
- /* L70: */
 
- 			}
 
- 		    }
 
- 		    jx += *incx;
 
- 		    kk += *n - j + 1;
 
- /* L80: */
 
- 		}
 
- 	    }
 
- 	}
 
-     } else {
 
- /*        Form  x := inv( A' )*x. */
 
- 	if (lsame_(uplo, "U")) {
 
- 	    kk = 1;
 
- 	    if (*incx == 1) {
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    temp = x[j];
 
- 		    k = kk;
 
- 		    i__2 = j - 1;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			temp -= ap[k] * x[i__];
 
- 			++k;
 
- /* L90: */
 
- 		    }
 
- 		    if (nounit) {
 
- 			temp /= ap[kk + j - 1];
 
- 		    }
 
- 		    x[j] = temp;
 
- 		    kk += j;
 
- /* L100: */
 
- 		}
 
- 	    } else {
 
- 		jx = kx;
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    temp = x[jx];
 
- 		    ix = kx;
 
- 		    i__2 = kk + j - 2;
 
- 		    for (k = kk; k <= i__2; ++k) {
 
- 			temp -= ap[k] * x[ix];
 
- 			ix += *incx;
 
- /* L110: */
 
- 		    }
 
- 		    if (nounit) {
 
- 			temp /= ap[kk + j - 1];
 
- 		    }
 
- 		    x[jx] = temp;
 
- 		    jx += *incx;
 
- 		    kk += j;
 
- /* L120: */
 
- 		}
 
- 	    }
 
- 	} else {
 
- 	    kk = *n * (*n + 1) / 2;
 
- 	    if (*incx == 1) {
 
- 		for (j = *n; j >= 1; --j) {
 
- 		    temp = x[j];
 
- 		    k = kk;
 
- 		    i__1 = j + 1;
 
- 		    for (i__ = *n; i__ >= i__1; --i__) {
 
- 			temp -= ap[k] * x[i__];
 
- 			--k;
 
- /* L130: */
 
- 		    }
 
- 		    if (nounit) {
 
- 			temp /= ap[kk - *n + j];
 
- 		    }
 
- 		    x[j] = temp;
 
- 		    kk -= *n - j + 1;
 
- /* L140: */
 
- 		}
 
- 	    } else {
 
- 		kx += (*n - 1) * *incx;
 
- 		jx = kx;
 
- 		for (j = *n; j >= 1; --j) {
 
- 		    temp = x[jx];
 
- 		    ix = kx;
 
- 		    i__1 = kk - (*n - (j + 1));
 
- 		    for (k = kk; k >= i__1; --k) {
 
- 			temp -= ap[k] * x[ix];
 
- 			ix -= *incx;
 
- /* L150: */
 
- 		    }
 
- 		    if (nounit) {
 
- 			temp /= ap[kk - *n + j];
 
- 		    }
 
- 		    x[jx] = temp;
 
- 		    jx -= *incx;
 
- 		    kk -= *n - j + 1;
 
- /* L160: */
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DTPSV . */
 
- } /* dtpsv_ */
 
 
  |