| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 | 
							- /* dgemm.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer *
 
- 	n, integer *k, doublereal *alpha, doublereal *a, integer *lda, 
 
- 	doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, 
 
- 	integer *ldc)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
 
- 	    i__3;
 
-     /* Local variables */
 
-     integer i__, j, l, info;
 
-     logical nota, notb;
 
-     doublereal temp;
 
-     integer ncola;
 
-     extern logical lsame_(char *, char *);
 
-     integer nrowa, nrowb;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEMM  performs one of the matrix-matrix operations */
 
- /*     C := alpha*op( A )*op( B ) + beta*C, */
 
- /*  where  op( X ) is one of */
 
- /*     op( X ) = X   or   op( X ) = X', */
 
- /*  alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
 
- /*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix. */
 
- /*  Arguments */
 
- /*  ========== */
 
- /*  TRANSA - CHARACTER*1. */
 
- /*           On entry, TRANSA specifies the form of op( A ) to be used in */
 
- /*           the matrix multiplication as follows: */
 
- /*              TRANSA = 'N' or 'n',  op( A ) = A. */
 
- /*              TRANSA = 'T' or 't',  op( A ) = A'. */
 
- /*              TRANSA = 'C' or 'c',  op( A ) = A'. */
 
- /*           Unchanged on exit. */
 
- /*  TRANSB - CHARACTER*1. */
 
- /*           On entry, TRANSB specifies the form of op( B ) to be used in */
 
- /*           the matrix multiplication as follows: */
 
- /*              TRANSB = 'N' or 'n',  op( B ) = B. */
 
- /*              TRANSB = 'T' or 't',  op( B ) = B'. */
 
- /*              TRANSB = 'C' or 'c',  op( B ) = B'. */
 
- /*           Unchanged on exit. */
 
- /*  M      - INTEGER. */
 
- /*           On entry,  M  specifies  the number  of rows  of the  matrix */
 
- /*           op( A )  and of the  matrix  C.  M  must  be at least  zero. */
 
- /*           Unchanged on exit. */
 
- /*  N      - INTEGER. */
 
- /*           On entry,  N  specifies the number  of columns of the matrix */
 
- /*           op( B ) and the number of columns of the matrix C. N must be */
 
- /*           at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  K      - INTEGER. */
 
- /*           On entry,  K  specifies  the number of columns of the matrix */
 
- /*           op( A ) and the number of rows of the matrix op( B ). K must */
 
- /*           be at least  zero. */
 
- /*           Unchanged on exit. */
 
- /*  ALPHA  - DOUBLE PRECISION. */
 
- /*           On entry, ALPHA specifies the scalar alpha. */
 
- /*           Unchanged on exit. */
 
- /*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */
 
- /*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise. */
 
- /*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k */
 
- /*           part of the array  A  must contain the matrix  A,  otherwise */
 
- /*           the leading  k by m  part of the array  A  must contain  the */
 
- /*           matrix A. */
 
- /*           Unchanged on exit. */
 
- /*  LDA    - INTEGER. */
 
- /*           On entry, LDA specifies the first dimension of A as declared */
 
- /*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then */
 
- /*           LDA must be at least  max( 1, m ), otherwise  LDA must be at */
 
- /*           least  max( 1, k ). */
 
- /*           Unchanged on exit. */
 
- /*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is */
 
- /*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise. */
 
- /*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n */
 
- /*           part of the array  B  must contain the matrix  B,  otherwise */
 
- /*           the leading  n by k  part of the array  B  must contain  the */
 
- /*           matrix B. */
 
- /*           Unchanged on exit. */
 
- /*  LDB    - INTEGER. */
 
- /*           On entry, LDB specifies the first dimension of B as declared */
 
- /*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then */
 
- /*           LDB must be at least  max( 1, k ), otherwise  LDB must be at */
 
- /*           least  max( 1, n ). */
 
- /*           Unchanged on exit. */
 
- /*  BETA   - DOUBLE PRECISION. */
 
- /*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is */
 
- /*           supplied as zero then C need not be set on input. */
 
- /*           Unchanged on exit. */
 
- /*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */
 
- /*           Before entry, the leading  m by n  part of the array  C must */
 
- /*           contain the matrix  C,  except when  beta  is zero, in which */
 
- /*           case C need not be set on entry. */
 
- /*           On exit, the array  C  is overwritten by the  m by n  matrix */
 
- /*           ( alpha*op( A )*op( B ) + beta*C ). */
 
- /*  LDC    - INTEGER. */
 
- /*           On entry, LDC specifies the first dimension of C as declared */
 
- /*           in  the  calling  (sub)  program.   LDC  must  be  at  least */
 
- /*           max( 1, m ). */
 
- /*           Unchanged on exit. */
 
- /*  Level 3 Blas routine. */
 
- /*  -- Written on 8-February-1989. */
 
- /*     Jack Dongarra, Argonne National Laboratory. */
 
- /*     Iain Duff, AERE Harwell. */
 
- /*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
 
- /*     Sven Hammarling, Numerical Algorithms Group Ltd. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not */
 
- /*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows */
 
- /*     and  columns of  A  and the  number of  rows  of  B  respectively. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     c_dim1 = *ldc;
 
-     c_offset = 1 + c_dim1;
 
-     c__ -= c_offset;
 
-     /* Function Body */
 
-     nota = lsame_(transa, "N");
 
-     notb = lsame_(transb, "N");
 
-     if (nota) {
 
- 	nrowa = *m;
 
- 	ncola = *k;
 
-     } else {
 
- 	nrowa = *k;
 
- 	ncola = *m;
 
-     }
 
-     if (notb) {
 
- 	nrowb = *k;
 
-     } else {
 
- 	nrowb = *n;
 
-     }
 
- /*     Test the input parameters. */
 
-     info = 0;
 
-     if (! nota && ! lsame_(transa, "C") && ! lsame_(
 
- 	    transa, "T")) {
 
- 	info = 1;
 
-     } else if (! notb && ! lsame_(transb, "C") && ! 
 
- 	    lsame_(transb, "T")) {
 
- 	info = 2;
 
-     } else if (*m < 0) {
 
- 	info = 3;
 
-     } else if (*n < 0) {
 
- 	info = 4;
 
-     } else if (*k < 0) {
 
- 	info = 5;
 
-     } else if (*lda < max(1,nrowa)) {
 
- 	info = 8;
 
-     } else if (*ldb < max(1,nrowb)) {
 
- 	info = 10;
 
-     } else if (*ldc < max(1,*m)) {
 
- 	info = 13;
 
-     }
 
-     if (info != 0) {
 
- 	xerbla_("DGEMM ", &info);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
 
- 	return 0;
 
-     }
 
- /*     And if  alpha.eq.zero. */
 
-     if (*alpha == 0.) {
 
- 	if (*beta == 0.) {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    c__[i__ + j * c_dim1] = 0.;
 
- /* L10: */
 
- 		}
 
- /* L20: */
 
- 	    }
 
- 	} else {
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Start the operations. */
 
-     if (notb) {
 
- 	if (nota) {
 
- /*           Form  C := alpha*A*B + beta*C. */
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (*beta == 0.) {
 
- 		    i__2 = *m;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			c__[i__ + j * c_dim1] = 0.;
 
- /* L50: */
 
- 		    }
 
- 		} else if (*beta != 1.) {
 
- 		    i__2 = *m;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
 
- /* L60: */
 
- 		    }
 
- 		}
 
- 		i__2 = *k;
 
- 		for (l = 1; l <= i__2; ++l) {
 
- 		    if (b[l + j * b_dim1] != 0.) {
 
- 			temp = *alpha * b[l + j * b_dim1];
 
- 			i__3 = *m;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
 
- 				    a_dim1];
 
- /* L70: */
 
- 			}
 
- 		    }
 
- /* L80: */
 
- 		}
 
- /* L90: */
 
- 	    }
 
- 	} else {
 
- /*           Form  C := alpha*A'*B + beta*C */
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    temp = 0.;
 
- 		    i__3 = *k;
 
- 		    for (l = 1; l <= i__3; ++l) {
 
- 			temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
 
- /* L100: */
 
- 		    }
 
- 		    if (*beta == 0.) {
 
- 			c__[i__ + j * c_dim1] = *alpha * temp;
 
- 		    } else {
 
- 			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
 
- 				i__ + j * c_dim1];
 
- 		    }
 
- /* L110: */
 
- 		}
 
- /* L120: */
 
- 	    }
 
- 	}
 
-     } else {
 
- 	if (nota) {
 
- /*           Form  C := alpha*A*B' + beta*C */
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		if (*beta == 0.) {
 
- 		    i__2 = *m;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			c__[i__ + j * c_dim1] = 0.;
 
- /* L130: */
 
- 		    }
 
- 		} else if (*beta != 1.) {
 
- 		    i__2 = *m;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
 
- /* L140: */
 
- 		    }
 
- 		}
 
- 		i__2 = *k;
 
- 		for (l = 1; l <= i__2; ++l) {
 
- 		    if (b[j + l * b_dim1] != 0.) {
 
- 			temp = *alpha * b[j + l * b_dim1];
 
- 			i__3 = *m;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
 
- 				    a_dim1];
 
- /* L150: */
 
- 			}
 
- 		    }
 
- /* L160: */
 
- 		}
 
- /* L170: */
 
- 	    }
 
- 	} else {
 
- /*           Form  C := alpha*A'*B' + beta*C */
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *m;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    temp = 0.;
 
- 		    i__3 = *k;
 
- 		    for (l = 1; l <= i__3; ++l) {
 
- 			temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
 
- /* L180: */
 
- 		    }
 
- 		    if (*beta == 0.) {
 
- 			c__[i__ + j * c_dim1] = *alpha * temp;
 
- 		    } else {
 
- 			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
 
- 				i__ + j * c_dim1];
 
- 		    }
 
- /* L190: */
 
- 		}
 
- /* L200: */
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGEMM . */
 
- } /* dgemm_ */
 
 
  |