101_building.doxy 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2019 CNRS
  4. * Copyright (C) 2011,2012,2018 Inria
  5. * Copyright (C) 2009-2011,2013-2016,2019 Université de Bordeaux
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*! \page BuildingAndInstallingStarPU Building and Installing StarPU
  19. \section InstallingABinaryPackage Installing a Binary Package
  20. One of the StarPU developers being a Debian Developer, the packages
  21. are well integrated and very uptodate. To see which packages are
  22. available, simply type:
  23. \verbatim
  24. $ apt-cache search starpu
  25. \endverbatim
  26. To install what you need, type for example:
  27. \verbatim
  28. $ sudo apt-get install libstarpu-1.3 libstarpu-dev
  29. \endverbatim
  30. \section InstallingFromSource Installing from Source
  31. StarPU can be built and installed by the standard means of the GNU
  32. autotools. The following chapter is intended to briefly remind how these tools
  33. can be used to install StarPU.
  34. \subsection OptionalDependencies Optional Dependencies
  35. The <c>hwloc</c> (http://www.open-mpi.org/software/hwloc) topology
  36. discovery library is not mandatory to use StarPU but strongly
  37. recommended. It allows for topology aware scheduling, which improves
  38. performance. <c>libhwloc</c> is available in major free operating system
  39. distributions, and for most operating systems.
  40. If <c>libhwloc</c> is installed in a standard
  41. location, no option is required, it will be detected automatically,
  42. otherwise \ref with-hwloc "--with-hwloc=<directory>" should be used to specify its
  43. location.
  44. If <c>libhwloc</c> is not available on your system, the option
  45. \ref without-hwloc "--without-hwloc" should be explicitely given when calling the
  46. <c>configure</c> script.
  47. \subsection GettingSources Getting Sources
  48. StarPU's sources can be obtained from the download page of
  49. the StarPU website (http://starpu.gforge.inria.fr/files/).
  50. All releases and the development tree of StarPU are freely available
  51. on Inria's gforge under the LGPL license. Some releases are available
  52. under the BSD license.
  53. The latest release can be downloaded from the Inria's gforge (http://gforge.inria.fr/frs/?group_id=1570) or
  54. directly from the StarPU download page (http://starpu.gforge.inria.fr/files/).
  55. The latest nightly snapshot can be downloaded from the StarPU gforge website (http://starpu.gforge.inria.fr/testing/).
  56. \verbatim
  57. $ wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  58. \endverbatim
  59. And finally, current development version is also accessible via git.
  60. It should only be used if you need the very latest changes (i.e. less
  61. than a day old!).
  62. \verbatim
  63. $ git clone https://scm.gforge.inria.fr/anonscm/git/starpu/starpu.git
  64. \endverbatim
  65. \subsection ConfiguringStarPU Configuring StarPU
  66. Running <c>autogen.sh</c> is not necessary when using the tarball
  67. releases of StarPU. However when using the source code from the git
  68. repository, you first need to generate the configure scripts and the
  69. Makefiles. This requires the availability of <c>autoconf</c> and
  70. <c>automake</c> >= 2.60.
  71. \verbatim
  72. $ ./autogen.sh
  73. \endverbatim
  74. You then need to configure StarPU. Details about options that are
  75. useful to give to <c>configure</c> are given in \ref CompilationConfiguration.
  76. \verbatim
  77. $ ./configure
  78. \endverbatim
  79. If <c>configure</c> does not detect some software or produces errors, please
  80. make sure to post the contents of the file <c>config.log</c> when
  81. reporting the issue.
  82. By default, the files produced during the compilation are placed in
  83. the source directory. As the compilation generates a lot of files, it
  84. is advised to put them all in a separate directory. It is then
  85. easier to cleanup, and this allows to compile several configurations
  86. out of the same source tree. To do so, simply enter the directory
  87. where you want the compilation to produce its files, and invoke the
  88. <c>configure</c> script located in the StarPU source directory.
  89. \verbatim
  90. $ mkdir build
  91. $ cd build
  92. $ ../configure
  93. \endverbatim
  94. By default, StarPU will be installed in <c>/usr/local/bin</c>,
  95. <c>/usr/local/lib</c>, etc. You can specify an installation prefix
  96. other than <c>/usr/local</c> using the option <c>--prefix</c>, for
  97. instance:
  98. \verbatim
  99. $ ../configure --prefix=$HOME/starpu
  100. \endverbatim
  101. \subsection BuildingStarPU Building StarPU
  102. \verbatim
  103. $ make
  104. \endverbatim
  105. Once everything is built, you may want to test the result. An
  106. extensive set of regression tests is provided with StarPU. Running the
  107. tests is done by calling <c>make check</c>. These tests are run every night
  108. and the result from the main profile is publicly available (http://starpu.gforge.inria.fr/testing/).
  109. \verbatim
  110. $ make check
  111. \endverbatim
  112. \subsection InstallingStarPU Installing StarPU
  113. In order to install StarPU at the location which was specified during
  114. configuration:
  115. \verbatim
  116. $ make install
  117. \endverbatim
  118. Libtool interface versioning information are included in
  119. libraries names (<c>libstarpu-1.3.so</c>, <c>libstarpumpi-1.3.so</c> and
  120. <c>libstarpufft-1.3.so</c>).
  121. \section SettingUpYourOwnCode Setting up Your Own Code
  122. \subsection SettingFlagsForCompilingLinkingAndRunningApplications Setting Flags for Compiling, Linking and Running Applications
  123. StarPU provides a <c>pkg-config</c> executable to obtain relevant compiler
  124. and linker flags. As compiling and linking an application against
  125. StarPU may require to use specific flags or libraries (for instance
  126. <c>CUDA</c> or <c>libspe2</c>).
  127. If StarPU was not installed at some standard location, the path of StarPU's
  128. library must be specified in the environment variable
  129. <c>PKG_CONFIG_PATH</c> to allow <c>pkg-config</c> to find it. For
  130. example if StarPU was installed in
  131. <c>$STARPU_PATH</c>:
  132. \verbatim
  133. $ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$STARPU_PATH/lib/pkgconfig
  134. \endverbatim
  135. The flags required to compile or link against StarPU are then
  136. accessible with the following commands:
  137. \verbatim
  138. $ pkg-config --cflags starpu-1.3 # options for the compiler
  139. $ pkg-config --libs starpu-1.3 # options for the linker
  140. \endverbatim
  141. Note that it is still possible to use the API provided in the version
  142. 1.0 of StarPU by calling <c>pkg-config</c> with the <c>starpu-1.0</c> package.
  143. Similar packages are provided for <c>starpumpi-1.0</c> and <c>starpufft-1.0</c>.
  144. It is also possible to use the API provided in the version
  145. 0.9 of StarPU by calling <c>pkg-config</c> with the <c>libstarpu</c> package.
  146. Similar packages are provided for <c>libstarpumpi</c> and <c>libstarpufft</c>.
  147. Make sure that <c>pkg-config --libs starpu-1.3</c> actually produces some output
  148. before going further: <c>PKG_CONFIG_PATH</c> has to point to the place where
  149. <c>starpu-1.3.pc</c> was installed during <c>make install</c>.
  150. Also pass the option <c>--static</c> if the application is to be
  151. linked statically.
  152. It is also necessary to set the environment variable <c>LD_LIBRARY_PATH</c> to
  153. locate dynamic libraries at runtime.
  154. \verbatim
  155. $ export LD_LIBRARY_PATH=$STARPU_PATH/lib:$LD_LIBRARY_PATH
  156. \endverbatim
  157. And it is useful to get access to the StarPU tools:
  158. \verbatim
  159. $ PATH=$PATH:$STARPU_PATH/bin
  160. \endverbatim
  161. When using a Makefile, the following lines can be added to set the
  162. options for the compiler and the linker:
  163. \verbatim
  164. CFLAGS += $$(pkg-config --cflags starpu-1.3)
  165. LDLIBS += $$(pkg-config --libs starpu-1.3)
  166. \endverbatim
  167. \subsection IntegratingStarPUInABuildSystem Integrating StarPU in a Build System
  168. \subsubsection StarPUInCMake Integrating StarPU in a CMake Build System
  169. This section shows a minimal example integrating StarPU in an existing application's CMake build system.
  170. Let's assume we want to build an executable from the following source code using CMake:
  171. \code{.c}
  172. #include <starpu.h>
  173. #include <stdio.h>
  174. int main(void)
  175. {
  176. int ret;
  177. ret = starpu_init(NULL);
  178. if (ret != 0)
  179. {
  180. return 1;
  181. }
  182. printf("%d CPU coress\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
  183. printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
  184. printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
  185. starpu_shutdown();
  186. return 0;
  187. }
  188. \endcode
  189. The \c CMakeLists.txt file below uses the Pkg-Config support from CMake to
  190. autodetect the StarPU installation and library dependences (such as
  191. <c>libhwloc</c>) provided that the <c>PKG_CONFIG_PATH</c> variable is set, and
  192. is sufficient to build a statically-linked executable. This example has been
  193. successfully tested with CMake 3.2, though it may work with earlier CMake 3.x
  194. versions.
  195. \code{File CMakeLists.txt}
  196. cmake_minimum_required (VERSION 3.2)
  197. project (hello_starpu)
  198. find_package(PkgConfig)
  199. pkg_check_modules(STARPU REQUIRED starpu-1.3)
  200. if (STARPU_FOUND)
  201. include_directories (${STARPU_INCLUDE_DIRS})
  202. link_directories (${STARPU_STATIC_LIBRARY_DIRS})
  203. link_libraries (${STARPU_STATIC_LIBRARIES})
  204. else (STARPU_FOUND)
  205. message(FATAL_ERROR "StarPU not found")
  206. endif()
  207. add_executable(hello_starpu hello_starpu.c)
  208. \endcode
  209. The following \c CMakeLists.txt implements an alternative, more complex
  210. strategy, still relying on Pkg-Config, but also taking into account additional
  211. flags. While more complete, this approach makes CMake's build types (Debug,
  212. Release, ...) unavailable because of the direct affectation to variable
  213. <c>CMAKE_C_FLAGS</c>. If both the full flags support and the build types
  214. support are needed, the \c CMakeLists.txt below may be altered to work with
  215. <c>CMAKE_C_FLAGS_RELEASE</c>, <c>CMAKE_C_FLAGS_DEBUG</c>, and others as needed.
  216. This example has been successfully tested with CMake 3.2, though it may work
  217. with earlier CMake 3.x versions.
  218. \code{File CMakeLists.txt}
  219. cmake_minimum_required (VERSION 3.2)
  220. project (hello_starpu)
  221. find_package(PkgConfig)
  222. pkg_check_modules(STARPU REQUIRED starpu-1.3)
  223. # This section must appear before 'add_executable'
  224. if (STARPU_FOUND)
  225. # CFLAGS other than -I
  226. foreach(CFLAG ${STARPU_CFLAGS_OTHER})
  227. set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CFLAG}")
  228. endforeach()
  229. # Static LDFLAGS other than -L
  230. foreach(LDFLAG ${STARPU_STATIC_LDFLAGS_OTHER})
  231. set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAG}")
  232. endforeach()
  233. # -L directories
  234. link_directories(${STARPU_STATIC_LIBRARY_DIRS})
  235. else (STARPU_FOUND)
  236. message(FATAL_ERROR "StarPU not found")
  237. endif()
  238. add_executable(hello_starpu hello_starpu.c)
  239. # This section must appear after 'add_executable'
  240. if (STARPU_FOUND)
  241. # -I directories
  242. target_include_directories(hello_starpu PRIVATE ${STARPU_INCLUDE_DIRS})
  243. # Static -l libs
  244. target_link_libraries(hello_starpu PRIVATE ${STARPU_STATIC_LIBRARIES})
  245. endif()
  246. \endcode
  247. \subsection RunningABasicStarPUApplication Running a Basic StarPU Application
  248. Basic examples using StarPU are built in the directory
  249. <c>examples/basic_examples/</c> (and installed in
  250. <c>$STARPU_PATH/lib/starpu/examples/</c>). You can for example run the example
  251. <c>vector_scal</c>.
  252. \verbatim
  253. $ ./examples/basic_examples/vector_scal
  254. BEFORE: First element was 1.000000
  255. AFTER: First element is 3.140000
  256. \endverbatim
  257. When StarPU is used for the first time, the directory
  258. <c>$STARPU_HOME/.starpu/</c> is created, performance models will be stored in
  259. this directory (\ref STARPU_HOME).
  260. Please note that buses are benchmarked when StarPU is launched for the
  261. first time. This may take a few minutes, or less if <c>libhwloc</c> is
  262. installed. This step is done only once per user and per machine.
  263. \subsection RunningABasicStarPUApplicationOnMicrosoft Running a Basic StarPU Application on Microsoft Visual C
  264. Batch files are provided to run StarPU applications under Microsoft
  265. Visual C. They are installed in <c>$STARPU_PATH/bin/msvc</c>.
  266. To execute a StarPU application, you first need to set the environment
  267. variable \ref STARPU_PATH.
  268. \verbatim
  269. c:\....> cd c:\cygwin\home\ci\starpu\
  270. c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
  271. c:\....> cd bin\msvc
  272. c:\....> starpu_open.bat starpu_simple.c
  273. \endverbatim
  274. The batch script will run Microsoft Visual C with a basic project file
  275. to run the given application.
  276. The batch script <c>starpu_clean.bat</c> can be used to delete all
  277. compilation generated files.
  278. The batch script <c>starpu_exec.bat</c> can be used to compile and execute a
  279. StarPU application from the command prompt.
  280. \verbatim
  281. c:\....> cd c:\cygwin\home\ci\starpu\
  282. c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
  283. c:\....> cd bin\msvc
  284. c:\....> starpu_exec.bat ..\..\..\..\examples\basic_examples\hello_world.c
  285. \endverbatim
  286. \verbatim
  287. MSVC StarPU Execution
  288. ...
  289. /out:hello_world.exe
  290. ...
  291. Hello world (params = {1, 2.00000})
  292. Callback function got argument 0000042
  293. c:\....>
  294. \endverbatim
  295. \subsection KernelThreadsStartedByStarPU Kernel Threads Started by StarPU
  296. StarPU automatically binds one thread per CPU core. It does not use
  297. SMT/hyperthreading because kernels are usually already optimized for using a
  298. full core, and using hyperthreading would make kernel calibration rather random.
  299. Since driving GPUs is a CPU-consuming task, StarPU dedicates one core
  300. per GPU.
  301. While StarPU tasks are executing, the application is not supposed to do
  302. computations in the threads it starts itself, tasks should be used instead.
  303. TODO: add a StarPU function to bind an application thread (e.g. the main thread)
  304. to a dedicated core (and thus disable the corresponding StarPU CPU worker).
  305. \subsection EnablingOpenCL Enabling OpenCL
  306. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  307. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  308. This design choice was necessary as OpenCL and CUDA can not run at the
  309. same time on the same NVIDIA GPU, as there is currently no interoperability
  310. between them.
  311. To enable OpenCL, you need either to disable CUDA when configuring StarPU:
  312. \verbatim
  313. $ ./configure --disable-cuda
  314. \endverbatim
  315. or when running applications:
  316. \verbatim
  317. $ STARPU_NCUDA=0 ./application
  318. \endverbatim
  319. OpenCL will automatically be started on any device not yet used by
  320. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  321. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  322. so:
  323. \verbatim
  324. $ STARPU_NCUDA=2 ./application
  325. \endverbatim
  326. \section BenchmarkingStarPU Benchmarking StarPU
  327. Some interesting benchmarks are installed among examples in
  328. <c>$STARPU_PATH/lib/starpu/examples/</c>. Make sure to try various
  329. schedulers, for instance <c>STARPU_SCHED=dmda</c>.
  330. \subsection TaskSizeOverhead Task Size Overhead
  331. This benchmark gives a glimpse into how long a task should be (in µs) for StarPU overhead
  332. to be low enough to keep efficiency. Running
  333. <c>tasks_size_overhead.sh</c> generates a plot
  334. of the speedup of tasks of various sizes, depending on the number of CPUs being
  335. used.
  336. \image html tasks_size_overhead.png
  337. \image latex tasks_size_overhead.eps "" width=\textwidth
  338. \subsection DataTransferLatency Data Transfer Latency
  339. <c>local_pingpong</c> performs a ping-pong between the first two CUDA nodes, and
  340. prints the measured latency.
  341. \subsection MatrixMatrixMultiplication Matrix-Matrix Multiplication
  342. <c>sgemm</c> and <c>dgemm</c> perform a blocked matrix-matrix
  343. multiplication using BLAS and cuBLAS. They output the obtained GFlops.
  344. \subsection CholeskyFactorization Cholesky Factorization
  345. <c>cholesky_*</c> perform a Cholesky factorization (single precision). They use different dependency primitives.
  346. \subsection LUFactorization LU Factorization
  347. <c>lu_*</c> perform an LU factorization. They use different dependency primitives.
  348. \subsection SimulatedBenchmarks Simulated benchmarks
  349. It can also be convenient to try simulated benchmarks, if you want to give a try
  350. at CPU-GPU scheduling without actually having a GPU at hand. This can be done by
  351. using the simgrid version of StarPU: first install the simgrid simulator from
  352. http://simgrid.gforge.inria.fr/ (we tested with simgrid 3.11, 3.12 and 3.13, other versions
  353. may have compatibility issues), then configure StarPU with \ref enable-simgrid
  354. "--enable-simgrid" and rebuild and install it, and then you can simulate the performance for a
  355. few virtualized systems shipped along StarPU: attila, mirage, idgraf, and sirocco.
  356. For instance:
  357. \verbatim
  358. $ export STARPU_PERF_MODEL_DIR=$STARPU_PATH/share/starpu/perfmodels/sampling
  359. $ export STARPU_HOSTNAME=attila
  360. $ $STARPU_PATH/lib/starpu/examples/cholesky_implicit -size $((960*20)) -nblocks 20
  361. \endverbatim
  362. Will show the performance of the cholesky factorization with the attila
  363. system. It will be interesting to try with different matrix sizes and
  364. schedulers.
  365. Performance models are available for <c>cholesky_*</c>, <c>lu_*</c>, <c>*gemm</c>, with block sizes
  366. 320, 640, or 960 (plus 1440 for sirocco), and for <c>stencil</c> with block size 128x128x128, 192x192x192, and
  367. 256x256x256.
  368. */