| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 | 
							- /* dtzrqf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b8 = 1.;
 
- /* Subroutine */ int dtzrqf_(integer *m, integer *n, doublereal *a, integer *
 
- 	lda, doublereal *tau, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, k, m1;
 
-     extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *), dgemv_(char *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *), dcopy_(integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *), daxpy_(integer *, doublereal 
 
- 	    *, doublereal *, integer *, doublereal *, integer *), dlarfp_(
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *), 
 
- 	    xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  This routine is deprecated and has been replaced by routine DTZRZF. */
 
- /*  DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
 
- /*  to upper triangular form by means of orthogonal transformations. */
 
- /*  The upper trapezoidal matrix A is factored as */
 
- /*     A = ( R  0 ) * Z, */
 
- /*  where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
 
- /*  triangular matrix. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  N >= M. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the leading M-by-N upper trapezoidal part of the */
 
- /*          array A must contain the matrix to be factorized. */
 
- /*          On exit, the leading M-by-M upper triangular part of A */
 
- /*          contains the upper triangular matrix R, and elements M+1 to */
 
- /*          N of the first M rows of A, with the array TAU, represent the */
 
- /*          orthogonal matrix Z as a product of M elementary reflectors. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,M). */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (M) */
 
- /*          The scalar factors of the elementary reflectors. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The factorization is obtained by Householder's method.  The kth */
 
- /*  transformation matrix, Z( k ), which is used to introduce zeros into */
 
- /*  the ( m - k + 1 )th row of A, is given in the form */
 
- /*     Z( k ) = ( I     0   ), */
 
- /*              ( 0  T( k ) ) */
 
- /*  where */
 
- /*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ), */
 
- /*                                                 (   0    ) */
 
- /*                                                 ( z( k ) ) */
 
- /*  tau is a scalar and z( k ) is an ( n - m ) element vector. */
 
- /*  tau and z( k ) are chosen to annihilate the elements of the kth row */
 
- /*  of X. */
 
- /*  The scalar tau is returned in the kth element of TAU and the vector */
 
- /*  u( k ) in the kth row of A, such that the elements of z( k ) are */
 
- /*  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
 
- /*  the upper triangular part of A. */
 
- /*  Z is given by */
 
- /*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --tau;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*m < 0) {
 
- 	*info = -1;
 
-     } else if (*n < *m) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTZRQF", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Perform the factorization. */
 
-     if (*m == 0) {
 
- 	return 0;
 
-     }
 
-     if (*m == *n) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    tau[i__] = 0.;
 
- /* L10: */
 
- 	}
 
-     } else {
 
- /* Computing MIN */
 
- 	i__1 = *m + 1;
 
- 	m1 = min(i__1,*n);
 
- 	for (k = *m; k >= 1; --k) {
 
- /*           Use a Householder reflection to zero the kth row of A. */
 
- /*           First set up the reflection. */
 
- 	    i__1 = *n - *m + 1;
 
- 	    dlarfp_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
 
- 		    k]);
 
- 	    if (tau[k] != 0. && k > 1) {
 
- /*              We now perform the operation  A := A*P( k ). */
 
- /*              Use the first ( k - 1 ) elements of TAU to store  a( k ), */
 
- /*              where  a( k ) consists of the first ( k - 1 ) elements of */
 
- /*              the  kth column  of  A.  Also  let  B  denote  the  first */
 
- /*              ( k - 1 ) rows of the last ( n - m ) columns of A. */
 
- 		i__1 = k - 1;
 
- 		dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);
 
- /*              Form   w = a( k ) + B*z( k )  in TAU. */
 
- 		i__1 = k - 1;
 
- 		i__2 = *n - *m;
 
- 		dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 + 
 
- 			1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
 
- 			c__1);
 
- /*              Now form  a( k ) := a( k ) - tau*w */
 
- /*              and       B      := B      - tau*w*z( k )'. */
 
- 		i__1 = k - 1;
 
- 		d__1 = -tau[k];
 
- 		daxpy_(&i__1, &d__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
 
- 			c__1);
 
- 		i__1 = k - 1;
 
- 		i__2 = *n - *m;
 
- 		d__1 = -tau[k];
 
- 		dger_(&i__1, &i__2, &d__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
 
- , lda, &a[m1 * a_dim1 + 1], lda);
 
- 	    }
 
- /* L20: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DTZRQF */
 
- } /* dtzrqf_ */
 
 
  |