| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 | 
							- /* dtrsen.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c_n1 = -1;
 
- /* Subroutine */ int dtrsen_(char *job, char *compq, logical *select, integer 
 
- 	*n, doublereal *t, integer *ldt, doublereal *q, integer *ldq, 
 
- 	doublereal *wr, doublereal *wi, integer *m, doublereal *s, doublereal 
 
- 	*sep, doublereal *work, integer *lwork, integer *iwork, integer *
 
- 	liwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer k, n1, n2, kk, nn, ks;
 
-     doublereal est;
 
-     integer kase;
 
-     logical pair;
 
-     integer ierr;
 
-     logical swap;
 
-     doublereal scale;
 
-     extern logical lsame_(char *, char *);
 
-     integer isave[3], lwmin;
 
-     logical wantq, wants;
 
-     doublereal rnorm;
 
-     extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *);
 
-     extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *);
 
-     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    xerbla_(char *, integer *);
 
-     logical wantbh;
 
-     extern /* Subroutine */ int dtrexc_(char *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer liwmin;
 
-     logical wantsp, lquery;
 
-     extern /* Subroutine */ int dtrsyl_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTRSEN reorders the real Schur factorization of a real matrix */
 
- /*  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
 
- /*  the leading diagonal blocks of the upper quasi-triangular matrix T, */
 
- /*  and the leading columns of Q form an orthonormal basis of the */
 
- /*  corresponding right invariant subspace. */
 
- /*  Optionally the routine computes the reciprocal condition numbers of */
 
- /*  the cluster of eigenvalues and/or the invariant subspace. */
 
- /*  T must be in Schur canonical form (as returned by DHSEQR), that is, */
 
- /*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
 
- /*  2-by-2 diagonal block has its diagonal elemnts equal and its */
 
- /*  off-diagonal elements of opposite sign. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOB     (input) CHARACTER*1 */
 
- /*          Specifies whether condition numbers are required for the */
 
- /*          cluster of eigenvalues (S) or the invariant subspace (SEP): */
 
- /*          = 'N': none; */
 
- /*          = 'E': for eigenvalues only (S); */
 
- /*          = 'V': for invariant subspace only (SEP); */
 
- /*          = 'B': for both eigenvalues and invariant subspace (S and */
 
- /*                 SEP). */
 
- /*  COMPQ   (input) CHARACTER*1 */
 
- /*          = 'V': update the matrix Q of Schur vectors; */
 
- /*          = 'N': do not update Q. */
 
- /*  SELECT  (input) LOGICAL array, dimension (N) */
 
- /*          SELECT specifies the eigenvalues in the selected cluster. To */
 
- /*          select a real eigenvalue w(j), SELECT(j) must be set to */
 
- /*          .TRUE.. To select a complex conjugate pair of eigenvalues */
 
- /*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
 
- /*          either SELECT(j) or SELECT(j+1) or both must be set to */
 
- /*          .TRUE.; a complex conjugate pair of eigenvalues must be */
 
- /*          either both included in the cluster or both excluded. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix T. N >= 0. */
 
- /*  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N) */
 
- /*          On entry, the upper quasi-triangular matrix T, in Schur */
 
- /*          canonical form. */
 
- /*          On exit, T is overwritten by the reordered matrix T, again in */
 
- /*          Schur canonical form, with the selected eigenvalues in the */
 
- /*          leading diagonal blocks. */
 
- /*  LDT     (input) INTEGER */
 
- /*          The leading dimension of the array T. LDT >= max(1,N). */
 
- /*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*          On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
 
- /*          On exit, if COMPQ = 'V', Q has been postmultiplied by the */
 
- /*          orthogonal transformation matrix which reorders T; the */
 
- /*          leading M columns of Q form an orthonormal basis for the */
 
- /*          specified invariant subspace. */
 
- /*          If COMPQ = 'N', Q is not referenced. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q. */
 
- /*          LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
 
- /*  WR      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  WI      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The real and imaginary parts, respectively, of the reordered */
 
- /*          eigenvalues of T. The eigenvalues are stored in the same */
 
- /*          order as on the diagonal of T, with WR(i) = T(i,i) and, if */
 
- /*          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
 
- /*          WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
 
- /*          sufficiently ill-conditioned, then its value may differ */
 
- /*          significantly from its value before reordering. */
 
- /*  M       (output) INTEGER */
 
- /*          The dimension of the specified invariant subspace. */
 
- /*          0 < = M <= N. */
 
- /*  S       (output) DOUBLE PRECISION */
 
- /*          If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
 
- /*          condition number for the selected cluster of eigenvalues. */
 
- /*          S cannot underestimate the true reciprocal condition number */
 
- /*          by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
 
- /*          If JOB = 'N' or 'V', S is not referenced. */
 
- /*  SEP     (output) DOUBLE PRECISION */
 
- /*          If JOB = 'V' or 'B', SEP is the estimated reciprocal */
 
- /*          condition number of the specified invariant subspace. If */
 
- /*          M = 0 or N, SEP = norm(T). */
 
- /*          If JOB = 'N' or 'E', SEP is not referenced. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          If JOB = 'N', LWORK >= max(1,N); */
 
- /*          if JOB = 'E', LWORK >= max(1,M*(N-M)); */
 
- /*          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK. */
 
- /*          If JOB = 'N' or 'E', LIWORK >= 1; */
 
- /*          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)). */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the optimal size of the IWORK array, */
 
- /*          returns this value as the first entry of the IWORK array, and */
 
- /*          no error message related to LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*          = 1: reordering of T failed because some eigenvalues are too */
 
- /*               close to separate (the problem is very ill-conditioned); */
 
- /*               T may have been partially reordered, and WR and WI */
 
- /*               contain the eigenvalues in the same order as in T; S and */
 
- /*               SEP (if requested) are set to zero. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  DTRSEN first collects the selected eigenvalues by computing an */
 
- /*  orthogonal transformation Z to move them to the top left corner of T. */
 
- /*  In other words, the selected eigenvalues are the eigenvalues of T11 */
 
- /*  in: */
 
- /*                Z'*T*Z = ( T11 T12 ) n1 */
 
- /*                         (  0  T22 ) n2 */
 
- /*                            n1  n2 */
 
- /*  where N = n1+n2 and Z' means the transpose of Z. The first n1 columns */
 
- /*  of Z span the specified invariant subspace of T. */
 
- /*  If T has been obtained from the real Schur factorization of a matrix */
 
- /*  A = Q*T*Q', then the reordered real Schur factorization of A is given */
 
- /*  by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span */
 
- /*  the corresponding invariant subspace of A. */
 
- /*  The reciprocal condition number of the average of the eigenvalues of */
 
- /*  T11 may be returned in S. S lies between 0 (very badly conditioned) */
 
- /*  and 1 (very well conditioned). It is computed as follows. First we */
 
- /*  compute R so that */
 
- /*                         P = ( I  R ) n1 */
 
- /*                             ( 0  0 ) n2 */
 
- /*                               n1 n2 */
 
- /*  is the projector on the invariant subspace associated with T11. */
 
- /*  R is the solution of the Sylvester equation: */
 
- /*                        T11*R - R*T22 = T12. */
 
- /*  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
 
- /*  the two-norm of M. Then S is computed as the lower bound */
 
- /*                      (1 + F-norm(R)**2)**(-1/2) */
 
- /*  on the reciprocal of 2-norm(P), the true reciprocal condition number. */
 
- /*  S cannot underestimate 1 / 2-norm(P) by more than a factor of */
 
- /*  sqrt(N). */
 
- /*  An approximate error bound for the computed average of the */
 
- /*  eigenvalues of T11 is */
 
- /*                         EPS * norm(T) / S */
 
- /*  where EPS is the machine precision. */
 
- /*  The reciprocal condition number of the right invariant subspace */
 
- /*  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
 
- /*  SEP is defined as the separation of T11 and T22: */
 
- /*                     sep( T11, T22 ) = sigma-min( C ) */
 
- /*  where sigma-min(C) is the smallest singular value of the */
 
- /*  n1*n2-by-n1*n2 matrix */
 
- /*     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
 
- /*  I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
 
- /*  product. We estimate sigma-min(C) by the reciprocal of an estimate of */
 
- /*  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
 
- /*  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2). */
 
- /*  When SEP is small, small changes in T can cause large changes in */
 
- /*  the invariant subspace. An approximate bound on the maximum angular */
 
- /*  error in the computed right invariant subspace is */
 
- /*                      EPS * norm(T) / SEP */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and test the input parameters */
 
-     /* Parameter adjustments */
 
-     --select;
 
-     t_dim1 = *ldt;
 
-     t_offset = 1 + t_dim1;
 
-     t -= t_offset;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --wr;
 
-     --wi;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantbh = lsame_(job, "B");
 
-     wants = lsame_(job, "E") || wantbh;
 
-     wantsp = lsame_(job, "V") || wantbh;
 
-     wantq = lsame_(compq, "V");
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     if (! lsame_(job, "N") && ! wants && ! wantsp) {
 
- 	*info = -1;
 
-     } else if (! lsame_(compq, "N") && ! wantq) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*ldt < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldq < 1 || wantq && *ldq < *n) {
 
- 	*info = -8;
 
-     } else {
 
- /*        Set M to the dimension of the specified invariant subspace, */
 
- /*        and test LWORK and LIWORK. */
 
- 	*m = 0;
 
- 	pair = FALSE_;
 
- 	i__1 = *n;
 
- 	for (k = 1; k <= i__1; ++k) {
 
- 	    if (pair) {
 
- 		pair = FALSE_;
 
- 	    } else {
 
- 		if (k < *n) {
 
- 		    if (t[k + 1 + k * t_dim1] == 0.) {
 
- 			if (select[k]) {
 
- 			    ++(*m);
 
- 			}
 
- 		    } else {
 
- 			pair = TRUE_;
 
- 			if (select[k] || select[k + 1]) {
 
- 			    *m += 2;
 
- 			}
 
- 		    }
 
- 		} else {
 
- 		    if (select[*n]) {
 
- 			++(*m);
 
- 		    }
 
- 		}
 
- 	    }
 
- /* L10: */
 
- 	}
 
- 	n1 = *m;
 
- 	n2 = *n - *m;
 
- 	nn = n1 * n2;
 
- 	if (wantsp) {
 
- /* Computing MAX */
 
- 	    i__1 = 1, i__2 = nn << 1;
 
- 	    lwmin = max(i__1,i__2);
 
- 	    liwmin = max(1,nn);
 
- 	} else if (lsame_(job, "N")) {
 
- 	    lwmin = max(1,*n);
 
- 	    liwmin = 1;
 
- 	} else if (lsame_(job, "E")) {
 
- 	    lwmin = max(1,nn);
 
- 	    liwmin = 1;
 
- 	}
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -15;
 
- 	} else if (*liwork < liwmin && ! lquery) {
 
- 	    *info = -17;
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- 	work[1] = (doublereal) lwmin;
 
- 	iwork[1] = liwmin;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTRSEN", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == *n || *m == 0) {
 
- 	if (wants) {
 
- 	    *s = 1.;
 
- 	}
 
- 	if (wantsp) {
 
- 	    *sep = dlange_("1", n, n, &t[t_offset], ldt, &work[1]);
 
- 	}
 
- 	goto L40;
 
-     }
 
- /*     Collect the selected blocks at the top-left corner of T. */
 
-     ks = 0;
 
-     pair = FALSE_;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	if (pair) {
 
- 	    pair = FALSE_;
 
- 	} else {
 
- 	    swap = select[k];
 
- 	    if (k < *n) {
 
- 		if (t[k + 1 + k * t_dim1] != 0.) {
 
- 		    pair = TRUE_;
 
- 		    swap = swap || select[k + 1];
 
- 		}
 
- 	    }
 
- 	    if (swap) {
 
- 		++ks;
 
- /*              Swap the K-th block to position KS. */
 
- 		ierr = 0;
 
- 		kk = k;
 
- 		if (k != ks) {
 
- 		    dtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
 
- 			    kk, &ks, &work[1], &ierr);
 
- 		}
 
- 		if (ierr == 1 || ierr == 2) {
 
- /*                 Blocks too close to swap: exit. */
 
- 		    *info = 1;
 
- 		    if (wants) {
 
- 			*s = 0.;
 
- 		    }
 
- 		    if (wantsp) {
 
- 			*sep = 0.;
 
- 		    }
 
- 		    goto L40;
 
- 		}
 
- 		if (pair) {
 
- 		    ++ks;
 
- 		}
 
- 	    }
 
- 	}
 
- /* L20: */
 
-     }
 
-     if (wants) {
 
- /*        Solve Sylvester equation for R: */
 
- /*           T11*R - R*T22 = scale*T12 */
 
- 	dlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
 
- 	dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 
 
- 		+ 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
 
- /*        Estimate the reciprocal of the condition number of the cluster */
 
- /*        of eigenvalues. */
 
- 	rnorm = dlange_("F", &n1, &n2, &work[1], &n1, &work[1]);
 
- 	if (rnorm == 0.) {
 
- 	    *s = 1.;
 
- 	} else {
 
- 	    *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
 
- 	}
 
-     }
 
-     if (wantsp) {
 
- /*        Estimate sep(T11,T22). */
 
- 	est = 0.;
 
- 	kase = 0;
 
- L30:
 
- 	dlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
 
- 	if (kase != 0) {
 
- 	    if (kase == 1) {
 
- /*              Solve  T11*R - R*T22 = scale*X. */
 
- 		dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
 
- 			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
 
- 			ierr);
 
- 	    } else {
 
- /*              Solve  T11'*R - R*T22' = scale*X. */
 
- 		dtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
 
- 			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
 
- 			ierr);
 
- 	    }
 
- 	    goto L30;
 
- 	}
 
- 	*sep = scale / est;
 
-     }
 
- L40:
 
- /*     Store the output eigenvalues in WR and WI. */
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	wr[k] = t[k + k * t_dim1];
 
- 	wi[k] = 0.;
 
- /* L50: */
 
-     }
 
-     i__1 = *n - 1;
 
-     for (k = 1; k <= i__1; ++k) {
 
- 	if (t[k + 1 + k * t_dim1] != 0.) {
 
- 	    wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], abs(d__1))) * sqrt((
 
- 		    d__2 = t[k + 1 + k * t_dim1], abs(d__2)));
 
- 	    wi[k + 1] = -wi[k];
 
- 	}
 
- /* L60: */
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     return 0;
 
- /*     End of DTRSEN */
 
- } /* dtrsen_ */
 
 
  |