| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696 | /* dtgsna.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b19 = 1.;static doublereal c_b21 = 0.;static integer c__2 = 2;static logical c_false = FALSE_;static integer c__3 = 3;/* Subroutine */ int dtgsna_(char *job, char *howmny, logical *select, 	integer *n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 	doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, 	doublereal *s, doublereal *dif, integer *mm, integer *m, doublereal *	work, integer *lwork, integer *iwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 	    vr_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, k;    doublereal c1, c2;    integer n1, n2, ks, iz;    doublereal eps, beta, cond;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    logical pair;    integer ierr;    doublereal uhav, uhbv;    integer ifst;    doublereal lnrm;    integer ilst;    doublereal rnrm;    extern /* Subroutine */ int dlag2_(doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, doublereal *);    extern doublereal dnrm2_(integer *, doublereal *, integer *);    doublereal root1, root2, scale;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    doublereal uhavi, uhbvi, tmpii;    integer lwmin;    logical wants;    doublereal tmpir, tmpri, dummy[1], tmprr;    extern doublereal dlapy2_(doublereal *, doublereal *);    doublereal dummy1[1];    extern doublereal dlamch_(char *);    doublereal alphai, alphar;    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    xerbla_(char *, integer *), dtgexc_(logical *, logical *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    integer *, doublereal *, integer *, integer *);    logical wantbh, wantdf, somcon;    doublereal alprqt;    extern /* Subroutine */ int dtgsyl_(char *, integer *, integer *, integer 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *, integer *);    doublereal smlnum;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTGSNA estimates reciprocal condition numbers for specified *//*  eigenvalues and/or eigenvectors of a matrix pair (A, B) in *//*  generalized real Schur canonical form (or of any matrix pair *//*  (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where *//*  Z' denotes the transpose of Z. *//*  (A, B) must be in generalized real Schur form (as returned by DGGES), *//*  i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal *//*  blocks. B is upper triangular. *//*  Arguments *//*  ========= *//*  JOB     (input) CHARACTER*1 *//*          Specifies whether condition numbers are required for *//*          eigenvalues (S) or eigenvectors (DIF): *//*          = 'E': for eigenvalues only (S); *//*          = 'V': for eigenvectors only (DIF); *//*          = 'B': for both eigenvalues and eigenvectors (S and DIF). *//*  HOWMNY  (input) CHARACTER*1 *//*          = 'A': compute condition numbers for all eigenpairs; *//*          = 'S': compute condition numbers for selected eigenpairs *//*                 specified by the array SELECT. *//*  SELECT  (input) LOGICAL array, dimension (N) *//*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which *//*          condition numbers are required. To select condition numbers *//*          for the eigenpair corresponding to a real eigenvalue w(j), *//*          SELECT(j) must be set to .TRUE.. To select condition numbers *//*          corresponding to a complex conjugate pair of eigenvalues w(j) *//*          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be *//*          set to .TRUE.. *//*          If HOWMNY = 'A', SELECT is not referenced. *//*  N       (input) INTEGER *//*          The order of the square matrix pair (A, B). N >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The upper quasi-triangular matrix A in the pair (A,B). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,N). *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,N) *//*          The upper triangular matrix B in the pair (A,B). *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,N). *//*  VL      (input) DOUBLE PRECISION array, dimension (LDVL,M) *//*          If JOB = 'E' or 'B', VL must contain left eigenvectors of *//*          (A, B), corresponding to the eigenpairs specified by HOWMNY *//*          and SELECT. The eigenvectors must be stored in consecutive *//*          columns of VL, as returned by DTGEVC. *//*          If JOB = 'V', VL is not referenced. *//*  LDVL    (input) INTEGER *//*          The leading dimension of the array VL. LDVL >= 1. *//*          If JOB = 'E' or 'B', LDVL >= N. *//*  VR      (input) DOUBLE PRECISION array, dimension (LDVR,M) *//*          If JOB = 'E' or 'B', VR must contain right eigenvectors of *//*          (A, B), corresponding to the eigenpairs specified by HOWMNY *//*          and SELECT. The eigenvectors must be stored in consecutive *//*          columns ov VR, as returned by DTGEVC. *//*          If JOB = 'V', VR is not referenced. *//*  LDVR    (input) INTEGER *//*          The leading dimension of the array VR. LDVR >= 1. *//*          If JOB = 'E' or 'B', LDVR >= N. *//*  S       (output) DOUBLE PRECISION array, dimension (MM) *//*          If JOB = 'E' or 'B', the reciprocal condition numbers of the *//*          selected eigenvalues, stored in consecutive elements of the *//*          array. For a complex conjugate pair of eigenvalues two *//*          consecutive elements of S are set to the same value. Thus *//*          S(j), DIF(j), and the j-th columns of VL and VR all *//*          correspond to the same eigenpair (but not in general the *//*          j-th eigenpair, unless all eigenpairs are selected). *//*          If JOB = 'V', S is not referenced. *//*  DIF     (output) DOUBLE PRECISION array, dimension (MM) *//*          If JOB = 'V' or 'B', the estimated reciprocal condition *//*          numbers of the selected eigenvectors, stored in consecutive *//*          elements of the array. For a complex eigenvector two *//*          consecutive elements of DIF are set to the same value. If *//*          the eigenvalues cannot be reordered to compute DIF(j), DIF(j) *//*          is set to 0; this can only occur when the true value would be *//*          very small anyway. *//*          If JOB = 'E', DIF is not referenced. *//*  MM      (input) INTEGER *//*          The number of elements in the arrays S and DIF. MM >= M. *//*  M       (output) INTEGER *//*          The number of elements of the arrays S and DIF used to store *//*          the specified condition numbers; for each selected real *//*          eigenvalue one element is used, and for each selected complex *//*          conjugate pair of eigenvalues, two elements are used. *//*          If HOWMNY = 'A', M is set to N. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,N). *//*          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (N + 6) *//*          If JOB = 'E', IWORK is not referenced. *//*  INFO    (output) INTEGER *//*          =0: Successful exit *//*          <0: If INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The reciprocal of the condition number of a generalized eigenvalue *//*  w = (a, b) is defined as *//*       S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v)) *//*  where u and v are the left and right eigenvectors of (A, B) *//*  corresponding to w; |z| denotes the absolute value of the complex *//*  number, and norm(u) denotes the 2-norm of the vector u. *//*  The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv) *//*  of the matrix pair (A, B). If both a and b equal zero, then (A B) is *//*  singular and S(I) = -1 is returned. *//*  An approximate error bound on the chordal distance between the i-th *//*  computed generalized eigenvalue w and the corresponding exact *//*  eigenvalue lambda is *//*       chord(w, lambda) <= EPS * norm(A, B) / S(I) *//*  where EPS is the machine precision. *//*  The reciprocal of the condition number DIF(i) of right eigenvector u *//*  and left eigenvector v corresponding to the generalized eigenvalue w *//*  is defined as follows: *//*  a) If the i-th eigenvalue w = (a,b) is real *//*     Suppose U and V are orthogonal transformations such that *//*                U'*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1 *//*                                        ( 0  S22 ),( 0 T22 )  n-1 *//*                                          1  n-1     1 n-1 *//*     Then the reciprocal condition number DIF(i) is *//*                Difl((a, b), (S22, T22)) = sigma-min( Zl ), *//*     where sigma-min(Zl) denotes the smallest singular value of the *//*     2(n-1)-by-2(n-1) matrix *//*         Zl = [ kron(a, In-1)  -kron(1, S22) ] *//*              [ kron(b, In-1)  -kron(1, T22) ] . *//*     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the *//*     Kronecker product between the matrices X and Y. *//*     Note that if the default method for computing DIF(i) is wanted *//*     (see DLATDF), then the parameter DIFDRI (see below) should be *//*     changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). *//*     See DTGSYL for more details. *//*  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, *//*     Suppose U and V are orthogonal transformations such that *//*                U'*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2 *//*                                       ( 0    S22 ),( 0    T22) n-2 *//*                                         2    n-2     2    n-2 *//*     and (S11, T11) corresponds to the complex conjugate eigenvalue *//*     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such *//*     that *//*         U1'*S11*V1 = ( s11 s12 )   and U1'*T11*V1 = ( t11 t12 ) *//*                      (  0  s22 )                    (  0  t22 ) *//*     where the generalized eigenvalues w = s11/t11 and *//*     conjg(w) = s22/t22. *//*     Then the reciprocal condition number DIF(i) is bounded by *//*         min( d1, max( 1, |real(s11)/real(s22)| )*d2 ) *//*     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where *//*     Z1 is the complex 2-by-2 matrix *//*              Z1 =  [ s11  -s22 ] *//*                    [ t11  -t22 ], *//*     This is done by computing (using real arithmetic) the *//*     roots of the characteristical polynomial det(Z1' * Z1 - lambda I), *//*     where Z1' denotes the conjugate transpose of Z1 and det(X) denotes *//*     the determinant of X. *//*     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an *//*     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2) *//*              Z2 = [ kron(S11', In-2)  -kron(I2, S22) ] *//*                   [ kron(T11', In-2)  -kron(I2, T22) ] *//*     Note that if the default method for computing DIF is wanted (see *//*     DLATDF), then the parameter DIFDRI (see below) should be changed *//*     from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL *//*     for more details. *//*  For each eigenvalue/vector specified by SELECT, DIF stores a *//*  Frobenius norm-based estimate of Difl. *//*  An approximate error bound for the i-th computed eigenvector VL(i) or *//*  VR(i) is given by *//*             EPS * norm(A, B) / DIF(i). *//*  See ref. [2-3] for more details and further references. *//*  Based on contributions by *//*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, *//*     Umea University, S-901 87 Umea, Sweden. *//*  References *//*  ========== *//*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the *//*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in *//*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and *//*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. *//*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified *//*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition *//*      Estimation: Theory, Algorithms and Software, *//*      Report UMINF - 94.04, Department of Computing Science, Umea *//*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working *//*      Note 87. To appear in Numerical Algorithms, 1996. *//*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software *//*      for Solving the Generalized Sylvester Equation and Estimating the *//*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, *//*      Department of Computing Science, Umea University, S-901 87 Umea, *//*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working *//*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22, *//*      No 1, 1996. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test the input parameters */    /* Parameter adjustments */    --select;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    vl_dim1 = *ldvl;    vl_offset = 1 + vl_dim1;    vl -= vl_offset;    vr_dim1 = *ldvr;    vr_offset = 1 + vr_dim1;    vr -= vr_offset;    --s;    --dif;    --work;    --iwork;    /* Function Body */    wantbh = lsame_(job, "B");    wants = lsame_(job, "E") || wantbh;    wantdf = lsame_(job, "V") || wantbh;    somcon = lsame_(howmny, "S");    *info = 0;    lquery = *lwork == -1;    if (! wants && ! wantdf) {	*info = -1;    } else if (! lsame_(howmny, "A") && ! somcon) {	*info = -2;    } else if (*n < 0) {	*info = -4;    } else if (*lda < max(1,*n)) {	*info = -6;    } else if (*ldb < max(1,*n)) {	*info = -8;    } else if (wants && *ldvl < *n) {	*info = -10;    } else if (wants && *ldvr < *n) {	*info = -12;    } else {/*        Set M to the number of eigenpairs for which condition numbers *//*        are required, and test MM. */	if (somcon) {	    *m = 0;	    pair = FALSE_;	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {		if (pair) {		    pair = FALSE_;		} else {		    if (k < *n) {			if (a[k + 1 + k * a_dim1] == 0.) {			    if (select[k]) {				++(*m);			    }			} else {			    pair = TRUE_;			    if (select[k] || select[k + 1]) {				*m += 2;			    }			}		    } else {			if (select[*n]) {			    ++(*m);			}		    }		}/* L10: */	    }	} else {	    *m = *n;	}	if (*n == 0) {	    lwmin = 1;	} else if (lsame_(job, "V") || lsame_(job, 		"B")) {	    lwmin = (*n << 1) * (*n + 2) + 16;	} else {	    lwmin = *n;	}	work[1] = (doublereal) lwmin;	if (*mm < *m) {	    *info = -15;	} else if (*lwork < lwmin && ! lquery) {	    *info = -18;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTGSNA", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Get machine constants */    eps = dlamch_("P");    smlnum = dlamch_("S") / eps;    ks = 0;    pair = FALSE_;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {/*        Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */	if (pair) {	    pair = FALSE_;	    goto L20;	} else {	    if (k < *n) {		pair = a[k + 1 + k * a_dim1] != 0.;	    }	}/*        Determine whether condition numbers are required for the k-th *//*        eigenpair. */	if (somcon) {	    if (pair) {		if (! select[k] && ! select[k + 1]) {		    goto L20;		}	    } else {		if (! select[k]) {		    goto L20;		}	    }	}	++ks;	if (wants) {/*           Compute the reciprocal condition number of the k-th *//*           eigenvalue. */	    if (pair) {/*              Complex eigenvalue pair. */		d__1 = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);		d__2 = dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);		rnrm = dlapy2_(&d__1, &d__2);		d__1 = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);		d__2 = dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);		lnrm = dlapy2_(&d__1, &d__2);		dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 			+ 1], &c__1, &c_b21, &work[1], &c__1);		tmprr = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &			c__1);		tmpri = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 			 &c__1);		dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) * 			vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);		tmpii = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 			 &c__1);		tmpir = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &			c__1);		uhav = tmprr + tmpii;		uhavi = tmpir - tmpri;		dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 			+ 1], &c__1, &c_b21, &work[1], &c__1);		tmprr = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &			c__1);		tmpri = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 			 &c__1);		dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) * 			vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);		tmpii = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 			 &c__1);		tmpir = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &			c__1);		uhbv = tmprr + tmpii;		uhbvi = tmpir - tmpri;		uhav = dlapy2_(&uhav, &uhavi);		uhbv = dlapy2_(&uhbv, &uhbvi);		cond = dlapy2_(&uhav, &uhbv);		s[ks] = cond / (rnrm * lnrm);		s[ks + 1] = s[ks];	    } else {/*              Real eigenvalue. */		rnrm = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);		lnrm = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);		dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 			+ 1], &c__1, &c_b21, &work[1], &c__1);		uhav = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)			;		dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 			+ 1], &c__1, &c_b21, &work[1], &c__1);		uhbv = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)			;		cond = dlapy2_(&uhav, &uhbv);		if (cond == 0.) {		    s[ks] = -1.;		} else {		    s[ks] = cond / (rnrm * lnrm);		}	    }	}	if (wantdf) {	    if (*n == 1) {		dif[ks] = dlapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);		goto L20;	    }/*           Estimate the reciprocal condition number of the k-th *//*           eigenvectors. */	    if (pair) {/*              Copy the  2-by 2 pencil beginning at (A(k,k), B(k, k)). *//*              Compute the eigenvalue(s) at position K. */		work[1] = a[k + k * a_dim1];		work[2] = a[k + 1 + k * a_dim1];		work[3] = a[k + (k + 1) * a_dim1];		work[4] = a[k + 1 + (k + 1) * a_dim1];		work[5] = b[k + k * b_dim1];		work[6] = b[k + 1 + k * b_dim1];		work[7] = b[k + (k + 1) * b_dim1];		work[8] = b[k + 1 + (k + 1) * b_dim1];		d__1 = smlnum * eps;		dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta, dummy1, 			 &alphar, dummy, &alphai);		alprqt = 1.;		c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.;		c2 = beta * 4. * beta * alphai * alphai;		root1 = c1 + sqrt(c1 * c1 - c2 * 4.);		root2 = c2 / root1;		root1 /= 2.;/* Computing MIN */		d__1 = sqrt(root1), d__2 = sqrt(root2);		cond = min(d__1,d__2);	    }/*           Copy the matrix (A, B) to the array WORK and swap the *//*           diagonal block beginning at A(k,k) to the (1,1) position. */	    dlacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);	    dlacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);	    ifst = k;	    ilst = 1;	    i__2 = *lwork - (*n << 1) * *n;	    dtgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n, 		     dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *		    n << 1) + 1], &i__2, &ierr);	    if (ierr > 0) {/*              Ill-conditioned problem - swap rejected. */		dif[ks] = 0.;	    } else {/*              Reordering successful, solve generalized Sylvester *//*              equation for R and L, *//*                         A22 * R - L * A11 = A12 *//*                         B22 * R - L * B11 = B12, *//*              and compute estimate of Difl((A11,B11), (A22, B22)). */		n1 = 1;		if (work[2] != 0.) {		    n1 = 2;		}		n2 = *n - n1;		if (n2 == 0) {		    dif[ks] = cond;		} else {		    i__ = *n * *n + 1;		    iz = (*n << 1) * *n + 1;		    i__2 = *lwork - (*n << 1) * *n;		    dtgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n, 			    &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1 			    + i__], n, &work[i__], n, &work[n1 + i__], n, &			    scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1], 			    &ierr);		    if (pair) {/* Computing MIN */			d__1 = max(1.,alprqt) * dif[ks];			dif[ks] = min(d__1,cond);		    }		}	    }	    if (pair) {		dif[ks + 1] = dif[ks];	    }	}	if (pair) {	    ++ks;	}L20:	;    }    work[1] = (doublereal) lwmin;    return 0;/*     End of DTGSNA */} /* dtgsna_ */
 |