| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 | /* dtbtrs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dtbtrs_(char *uplo, char *trans, char *diag, integer *n, 	integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal 	*b, integer *ldb, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;    /* Local variables */    integer j;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dtbsv_(char *, char *, char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);    logical nounit;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTBTRS solves a triangular system of the form *//*     A * X = B  or  A**T * X = B, *//*  where A is a triangular band matrix of order N, and B is an *//*  N-by NRHS matrix.  A check is made to verify that A is nonsingular. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  A is upper triangular; *//*          = 'L':  A is lower triangular. *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the form the system of equations: *//*          = 'N':  A * X = B  (No transpose) *//*          = 'T':  A**T * X = B  (Transpose) *//*          = 'C':  A**H * X = B  (Conjugate transpose = Transpose) *//*  DIAG    (input) CHARACTER*1 *//*          = 'N':  A is non-unit triangular; *//*          = 'U':  A is unit triangular. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KD      (input) INTEGER *//*          The number of superdiagonals or subdiagonals of the *//*          triangular band matrix A.  KD >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) *//*          The upper or lower triangular band matrix A, stored in the *//*          first kd+1 rows of AB.  The j-th column of A is stored *//*          in the j-th column of the array AB as follows: *//*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). *//*          If DIAG = 'U', the diagonal elements of A are not referenced *//*          and are assumed to be 1. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KD+1. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the right hand side matrix B. *//*          On exit, if INFO = 0, the solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the i-th diagonal element of A is zero, *//*                indicating that the matrix is singular and the *//*                solutions X have not been computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    nounit = lsame_(diag, "N");    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (! lsame_(trans, "N") && ! lsame_(trans, 	    "T") && ! lsame_(trans, "C")) {	*info = -2;    } else if (! nounit && ! lsame_(diag, "U")) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*kd < 0) {	*info = -5;    } else if (*nrhs < 0) {	*info = -6;    } else if (*ldab < *kd + 1) {	*info = -8;    } else if (*ldb < max(1,*n)) {	*info = -10;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTBTRS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Check for singularity. */    if (nounit) {	if (upper) {	    i__1 = *n;	    for (*info = 1; *info <= i__1; ++(*info)) {		if (ab[*kd + 1 + *info * ab_dim1] == 0.) {		    return 0;		}/* L10: */	    }	} else {	    i__1 = *n;	    for (*info = 1; *info <= i__1; ++(*info)) {		if (ab[*info * ab_dim1 + 1] == 0.) {		    return 0;		}/* L20: */	    }	}    }    *info = 0;/*     Solve A * X = B  or  A' * X = B. */    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {	dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &b[j * b_dim1 		+ 1], &c__1);/* L30: */    }    return 0;/*     End of DTBTRS */} /* dtbtrs_ */
 |