| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 | /* dsytd2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b8 = 0.;static doublereal c_b14 = -1.;/* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer *	lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal taui;    extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal alpha;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *), dlarfg_(integer *, doublereal *, 	     doublereal *, integer *, doublereal *), xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal *//*  form T by an orthogonal similarity transformation: Q' * A * Q = T. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored: *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          n-by-n upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n-by-n lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if UPLO = 'U', the diagonal and first superdiagonal *//*          of A are overwritten by the corresponding elements of the *//*          tridiagonal matrix T, and the elements above the first *//*          superdiagonal, with the array TAU, represent the orthogonal *//*          matrix Q as a product of elementary reflectors; if UPLO *//*          = 'L', the diagonal and first subdiagonal of A are over- *//*          written by the corresponding elements of the tridiagonal *//*          matrix T, and the elements below the first subdiagonal, with *//*          the array TAU, represent the orthogonal matrix Q as a product *//*          of elementary reflectors. See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  D       (output) DOUBLE PRECISION array, dimension (N) *//*          The diagonal elements of the tridiagonal matrix T: *//*          D(i) = A(i,i). *//*  E       (output) DOUBLE PRECISION array, dimension (N-1) *//*          The off-diagonal elements of the tridiagonal matrix T: *//*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. *//*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  If UPLO = 'U', the matrix Q is represented as a product of elementary *//*  reflectors *//*     Q = H(n-1) . . . H(2) H(1). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in *//*  A(1:i-1,i+1), and tau in TAU(i). *//*  If UPLO = 'L', the matrix Q is represented as a product of elementary *//*  reflectors *//*     Q = H(1) H(2) . . . H(n-1). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), *//*  and tau in TAU(i). *//*  The contents of A on exit are illustrated by the following examples *//*  with n = 5: *//*  if UPLO = 'U':                       if UPLO = 'L': *//*    (  d   e   v2  v3  v4 )              (  d                  ) *//*    (      d   e   v3  v4 )              (  e   d              ) *//*    (          d   e   v4 )              (  v1  e   d          ) *//*    (              d   e  )              (  v1  v2  e   d      ) *//*    (                  d  )              (  v1  v2  v3  e   d  ) *//*  where d and e denote diagonal and off-diagonal elements of T, and vi *//*  denotes an element of the vector defining H(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --d__;    --e;    --tau;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSYTD2", &i__1);	return 0;    }/*     Quick return if possible */    if (*n <= 0) {	return 0;    }    if (upper) {/*        Reduce the upper triangle of A */	for (i__ = *n - 1; i__ >= 1; --i__) {/*           Generate elementary reflector H(i) = I - tau * v * v' *//*           to annihilate A(1:i-1,i+1) */	    dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1 		    + 1], &c__1, &taui);	    e[i__] = a[i__ + (i__ + 1) * a_dim1];	    if (taui != 0.) {/*              Apply H(i) from both sides to A(1:i,1:i) */		a[i__ + (i__ + 1) * a_dim1] = 1.;/*              Compute  x := tau * A * v  storing x in TAU(1:i) */		dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * 			a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1);/*              Compute  w := x - 1/2 * tau * (x'*v) * v */		alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1) 			* a_dim1 + 1], &c__1);		daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[			1], &c__1);/*              Apply the transformation as a rank-2 update: *//*                 A := A - v * w' - w * v' */		dsyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1, 			&tau[1], &c__1, &a[a_offset], lda);		a[i__ + (i__ + 1) * a_dim1] = e[i__];	    }	    d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];	    tau[i__] = taui;/* L10: */	}	d__[1] = a[a_dim1 + 1];    } else {/*        Reduce the lower triangle of A */	i__1 = *n - 1;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Generate elementary reflector H(i) = I - tau * v * v' *//*           to annihilate A(i+2:n,i) */	    i__2 = *n - i__;/* Computing MIN */	    i__3 = i__ + 2;	    dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ i__ *		     a_dim1], &c__1, &taui);	    e[i__] = a[i__ + 1 + i__ * a_dim1];	    if (taui != 0.) {/*              Apply H(i) from both sides to A(i+1:n,i+1:n) */		a[i__ + 1 + i__ * a_dim1] = 1.;/*              Compute  x := tau * A * v  storing y in TAU(i:n-1) */		i__2 = *n - i__;		dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], 			lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[			i__], &c__1);/*              Compute  w := x - 1/2 * tau * (x'*v) * v */		i__2 = *n - i__;		alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a[i__ + 			1 + i__ * a_dim1], &c__1);		i__2 = *n - i__;		daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[			i__], &c__1);/*              Apply the transformation as a rank-2 update: *//*                 A := A - v * w' - w * v' */		i__2 = *n - i__;		dsyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1, 			 &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], 			lda);		a[i__ + 1 + i__ * a_dim1] = e[i__];	    }	    d__[i__] = a[i__ + i__ * a_dim1];	    tau[i__] = taui;/* L20: */	}	d__[*n] = a[*n + *n * a_dim1];    }    return 0;/*     End of DSYTD2 */} /* dsytd2_ */
 |