| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 | 
							- /* dsygv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static doublereal c_b16 = 1.;
 
- /* Subroutine */ int dsygv_(integer *itype, char *jobz, char *uplo, integer *
 
- 	n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 
 
- 	doublereal *w, doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer nb, neig;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     char trans[1];
 
-     extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     logical upper;
 
-     extern /* Subroutine */ int dsyev_(char *, char *, integer *, doublereal *
 
- , integer *, doublereal *, doublereal *, integer *, integer *);
 
-     logical wantz;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, 
 
- 	    integer *, integer *);
 
-     integer lwkmin;
 
-     extern /* Subroutine */ int dsygst_(integer *, char *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSYGV computes all the eigenvalues, and optionally, the eigenvectors */
 
- /*  of a real generalized symmetric-definite eigenproblem, of the form */
 
- /*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x. */
 
- /*  Here A and B are assumed to be symmetric and B is also */
 
- /*  positive definite. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ITYPE   (input) INTEGER */
 
- /*          Specifies the problem type to be solved: */
 
- /*          = 1:  A*x = (lambda)*B*x */
 
- /*          = 2:  A*B*x = (lambda)*x */
 
- /*          = 3:  B*A*x = (lambda)*x */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangles of A and B are stored; */
 
- /*          = 'L':  Lower triangles of A and B are stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A and B.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
 
- /*          leading N-by-N upper triangular part of A contains the */
 
- /*          upper triangular part of the matrix A.  If UPLO = 'L', */
 
- /*          the leading N-by-N lower triangular part of A contains */
 
- /*          the lower triangular part of the matrix A. */
 
- /*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
 
- /*          matrix Z of eigenvectors.  The eigenvectors are normalized */
 
- /*          as follows: */
 
- /*          if ITYPE = 1 or 2, Z**T*B*Z = I; */
 
- /*          if ITYPE = 3, Z**T*inv(B)*Z = I. */
 
- /*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
 
- /*          or the lower triangle (if UPLO='L') of A, including the */
 
- /*          diagonal, is destroyed. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
 
- /*          On entry, the symmetric positive definite matrix B. */
 
- /*          If UPLO = 'U', the leading N-by-N upper triangular part of B */
 
- /*          contains the upper triangular part of the matrix B. */
 
- /*          If UPLO = 'L', the leading N-by-N lower triangular part of B */
 
- /*          contains the lower triangular part of the matrix B. */
 
- /*          On exit, if INFO <= N, the part of B containing the matrix is */
 
- /*          overwritten by the triangular factor U or L from the Cholesky */
 
- /*          factorization B = U**T*U or B = L*L**T. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, the eigenvalues in ascending order. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The length of the array WORK.  LWORK >= max(1,3*N-1). */
 
- /*          For optimal efficiency, LWORK >= (NB+2)*N, */
 
- /*          where NB is the blocksize for DSYTRD returned by ILAENV. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  DPOTRF or DSYEV returned an error code: */
 
- /*             <= N:  if INFO = i, DSYEV failed to converge; */
 
- /*                    i off-diagonal elements of an intermediate */
 
- /*                    tridiagonal form did not converge to zero; */
 
- /*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
 
- /*                    minor of order i of B is not positive definite. */
 
- /*                    The factorization of B could not be completed and */
 
- /*                    no eigenvalues or eigenvectors were computed. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --w;
 
-     --work;
 
-     /* Function Body */
 
-     wantz = lsame_(jobz, "V");
 
-     upper = lsame_(uplo, "U");
 
-     lquery = *lwork == -1;
 
-     *info = 0;
 
-     if (*itype < 1 || *itype > 3) {
 
- 	*info = -1;
 
-     } else if (! (wantz || lsame_(jobz, "N"))) {
 
- 	*info = -2;
 
-     } else if (! (upper || lsame_(uplo, "L"))) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -8;
 
-     }
 
-     if (*info == 0) {
 
- /* Computing MAX */
 
- 	i__1 = 1, i__2 = *n * 3 - 1;
 
- 	lwkmin = max(i__1,i__2);
 
- 	nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
 
- /* Computing MAX */
 
- 	i__1 = lwkmin, i__2 = (nb + 2) * *n;
 
- 	lwkopt = max(i__1,i__2);
 
- 	work[1] = (doublereal) lwkopt;
 
- 	if (*lwork < lwkmin && ! lquery) {
 
- 	    *info = -11;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSYGV ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Form a Cholesky factorization of B. */
 
-     dpotrf_(uplo, n, &b[b_offset], ldb, info);
 
-     if (*info != 0) {
 
- 	*info = *n + *info;
 
- 	return 0;
 
-     }
 
- /*     Transform problem to standard eigenvalue problem and solve. */
 
-     dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
 
-     dsyev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, info);
 
-     if (wantz) {
 
- /*        Backtransform eigenvectors to the original problem. */
 
- 	neig = *n;
 
- 	if (*info > 0) {
 
- 	    neig = *info - 1;
 
- 	}
 
- 	if (*itype == 1 || *itype == 2) {
 
- /*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
 
- /*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
 
- 	    if (upper) {
 
- 		*(unsigned char *)trans = 'N';
 
- 	    } else {
 
- 		*(unsigned char *)trans = 'T';
 
- 	    }
 
- 	    dtrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
 
- 		    b_offset], ldb, &a[a_offset], lda);
 
- 	} else if (*itype == 3) {
 
- /*           For B*A*x=(lambda)*x; */
 
- /*           backtransform eigenvectors: x = L*y or U'*y */
 
- 	    if (upper) {
 
- 		*(unsigned char *)trans = 'T';
 
- 	    } else {
 
- 		*(unsigned char *)trans = 'N';
 
- 	    }
 
- 	    dtrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
 
- 		    b_offset], ldb, &a[a_offset], lda);
 
- 	}
 
-     }
 
-     work[1] = (doublereal) lwkopt;
 
-     return 0;
 
- /*     End of DSYGV */
 
- } /* dsygv_ */
 
 
  |