| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622 | /* dsteqr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b9 = 0.;static doublereal c_b10 = 1.;static integer c__0 = 0;static integer c__1 = 1;static integer c__2 = 2;/* Subroutine */ int dsteqr_(char *compz, integer *n, doublereal *d__, 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 	integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    doublereal b, c__, f, g;    integer i__, j, k, l, m;    doublereal p, r__, s;    integer l1, ii, mm, lm1, mm1, nm1;    doublereal rt1, rt2, eps;    integer lsv;    doublereal tst, eps2;    integer lend, jtot;    extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal 	    *, doublereal *, doublereal *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *);    doublereal anorm;    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dlaev2_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *);    integer lendm1, lendp1;    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);    integer iscale;    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), dlaset_(char *, integer *, integer 	    *, doublereal *, doublereal *, doublereal *, integer *);    doublereal safmin;    extern /* Subroutine */ int dlartg_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *);    doublereal safmax;    extern /* Subroutine */ int xerbla_(char *, integer *);    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);    extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, 	    integer *);    integer lendsv;    doublereal ssfmin;    integer nmaxit, icompz;    doublereal ssfmax;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTEQR computes all eigenvalues and, optionally, eigenvectors of a *//*  symmetric tridiagonal matrix using the implicit QL or QR method. *//*  The eigenvectors of a full or band symmetric matrix can also be found *//*  if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to *//*  tridiagonal form. *//*  Arguments *//*  ========= *//*  COMPZ   (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only. *//*          = 'V':  Compute eigenvalues and eigenvectors of the original *//*                  symmetric matrix.  On entry, Z must contain the *//*                  orthogonal matrix used to reduce the original matrix *//*                  to tridiagonal form. *//*          = 'I':  Compute eigenvalues and eigenvectors of the *//*                  tridiagonal matrix.  Z is initialized to the identity *//*                  matrix. *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the diagonal elements of the tridiagonal matrix. *//*          On exit, if INFO = 0, the eigenvalues in ascending order. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, the (n-1) subdiagonal elements of the tridiagonal *//*          matrix. *//*          On exit, E has been destroyed. *//*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          On entry, if  COMPZ = 'V', then Z contains the orthogonal *//*          matrix used in the reduction to tridiagonal form. *//*          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the *//*          orthonormal eigenvectors of the original symmetric matrix, *//*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors *//*          of the symmetric tridiagonal matrix. *//*          If COMPZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          eigenvectors are desired, then  LDZ >= max(1,N). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) *//*          If COMPZ = 'N', then WORK is not referenced. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  the algorithm has failed to find all the eigenvalues in *//*                a total of 30*N iterations; if INFO = i, then i *//*                elements of E have not converged to zero; on exit, D *//*                and E contain the elements of a symmetric tridiagonal *//*                matrix which is orthogonally similar to the original *//*                matrix. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    /* Function Body */    *info = 0;    if (lsame_(compz, "N")) {	icompz = 0;    } else if (lsame_(compz, "V")) {	icompz = 1;    } else if (lsame_(compz, "I")) {	icompz = 2;    } else {	icompz = -1;    }    if (icompz < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSTEQR", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (icompz == 2) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }/*     Determine the unit roundoff and over/underflow thresholds. */    eps = dlamch_("E");/* Computing 2nd power */    d__1 = eps;    eps2 = d__1 * d__1;    safmin = dlamch_("S");    safmax = 1. / safmin;    ssfmax = sqrt(safmax) / 3.;    ssfmin = sqrt(safmin) / eps2;/*     Compute the eigenvalues and eigenvectors of the tridiagonal *//*     matrix. */    if (icompz == 2) {	dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);    }    nmaxit = *n * 30;    jtot = 0;/*     Determine where the matrix splits and choose QL or QR iteration *//*     for each block, according to whether top or bottom diagonal *//*     element is smaller. */    l1 = 1;    nm1 = *n - 1;L10:    if (l1 > *n) {	goto L160;    }    if (l1 > 1) {	e[l1 - 1] = 0.;    }    if (l1 <= nm1) {	i__1 = nm1;	for (m = l1; m <= i__1; ++m) {	    tst = (d__1 = e[m], abs(d__1));	    if (tst == 0.) {		goto L30;	    }	    if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m 		    + 1], abs(d__2))) * eps) {		e[m] = 0.;		goto L30;	    }/* L20: */	}    }    m = *n;L30:    l = l1;    lsv = l;    lend = m;    lendsv = lend;    l1 = m + 1;    if (lend == l) {	goto L10;    }/*     Scale submatrix in rows and columns L to LEND */    i__1 = lend - l + 1;    anorm = dlanst_("I", &i__1, &d__[l], &e[l]);    iscale = 0;    if (anorm == 0.) {	goto L10;    }    if (anorm > ssfmax) {	iscale = 1;	i__1 = lend - l + 1;	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 		info);	i__1 = lend - l;	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 		info);    } else if (anorm < ssfmin) {	iscale = 2;	i__1 = lend - l + 1;	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 		info);	i__1 = lend - l;	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 		info);    }/*     Choose between QL and QR iteration */    if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {	lend = lsv;	l = lendsv;    }    if (lend > l) {/*        QL Iteration *//*        Look for small subdiagonal element. */L40:	if (l != lend) {	    lendm1 = lend - 1;	    i__1 = lendm1;	    for (m = l; m <= i__1; ++m) {/* Computing 2nd power */		d__2 = (d__1 = e[m], abs(d__1));		tst = d__2 * d__2;		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 			+ 1], abs(d__2)) + safmin) {		    goto L60;		}/* L50: */	    }	}	m = lend;L60:	if (m < lend) {	    e[m] = 0.;	}	p = d__[l];	if (m == l) {	    goto L80;	}/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 *//*        to compute its eigensystem. */	if (m == l + 1) {	    if (icompz > 0) {		dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);		work[l] = c__;		work[*n - 1 + l] = s;		dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &			z__[l * z_dim1 + 1], ldz);	    } else {		dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);	    }	    d__[l] = rt1;	    d__[l + 1] = rt2;	    e[l] = 0.;	    l += 2;	    if (l <= lend) {		goto L40;	    }	    goto L140;	}	if (jtot == nmaxit) {	    goto L140;	}	++jtot;/*        Form shift. */	g = (d__[l + 1] - p) / (e[l] * 2.);	r__ = dlapy2_(&g, &c_b10);	g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));	s = 1.;	c__ = 1.;	p = 0.;/*        Inner loop */	mm1 = m - 1;	i__1 = l;	for (i__ = mm1; i__ >= i__1; --i__) {	    f = s * e[i__];	    b = c__ * e[i__];	    dlartg_(&g, &f, &c__, &s, &r__);	    if (i__ != m - 1) {		e[i__ + 1] = r__;	    }	    g = d__[i__ + 1] - p;	    r__ = (d__[i__] - g) * s + c__ * 2. * b;	    p = s * r__;	    d__[i__ + 1] = g + p;	    g = c__ * r__ - b;/*           If eigenvectors are desired, then save rotations. */	    if (icompz > 0) {		work[i__] = c__;		work[*n - 1 + i__] = -s;	    }/* L70: */	}/*        If eigenvectors are desired, then apply saved rotations. */	if (icompz > 0) {	    mm = m - l + 1;	    dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l 		    * z_dim1 + 1], ldz);	}	d__[l] -= p;	e[l] = g;	goto L40;/*        Eigenvalue found. */L80:	d__[l] = p;	++l;	if (l <= lend) {	    goto L40;	}	goto L140;    } else {/*        QR Iteration *//*        Look for small superdiagonal element. */L90:	if (l != lend) {	    lendp1 = lend + 1;	    i__1 = lendp1;	    for (m = l; m >= i__1; --m) {/* Computing 2nd power */		d__2 = (d__1 = e[m - 1], abs(d__1));		tst = d__2 * d__2;		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 			- 1], abs(d__2)) + safmin) {		    goto L110;		}/* L100: */	    }	}	m = lend;L110:	if (m > lend) {	    e[m - 1] = 0.;	}	p = d__[l];	if (m == l) {	    goto L130;	}/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 *//*        to compute its eigensystem. */	if (m == l - 1) {	    if (icompz > 0) {		dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)			;		work[m] = c__;		work[*n - 1 + m] = s;		dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &			z__[(l - 1) * z_dim1 + 1], ldz);	    } else {		dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);	    }	    d__[l - 1] = rt1;	    d__[l] = rt2;	    e[l - 1] = 0.;	    l += -2;	    if (l >= lend) {		goto L90;	    }	    goto L140;	}	if (jtot == nmaxit) {	    goto L140;	}	++jtot;/*        Form shift. */	g = (d__[l - 1] - p) / (e[l - 1] * 2.);	r__ = dlapy2_(&g, &c_b10);	g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));	s = 1.;	c__ = 1.;	p = 0.;/*        Inner loop */	lm1 = l - 1;	i__1 = lm1;	for (i__ = m; i__ <= i__1; ++i__) {	    f = s * e[i__];	    b = c__ * e[i__];	    dlartg_(&g, &f, &c__, &s, &r__);	    if (i__ != m) {		e[i__ - 1] = r__;	    }	    g = d__[i__] - p;	    r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;	    p = s * r__;	    d__[i__] = g + p;	    g = c__ * r__ - b;/*           If eigenvectors are desired, then save rotations. */	    if (icompz > 0) {		work[i__] = c__;		work[*n - 1 + i__] = s;	    }/* L120: */	}/*        If eigenvectors are desired, then apply saved rotations. */	if (icompz > 0) {	    mm = l - m + 1;	    dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m 		    * z_dim1 + 1], ldz);	}	d__[l] -= p;	e[lm1] = g;	goto L90;/*        Eigenvalue found. */L130:	d__[l] = p;	--l;	if (l >= lend) {	    goto L90;	}	goto L140;    }/*     Undo scaling if necessary */L140:    if (iscale == 1) {	i__1 = lendsv - lsv + 1;	dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 		n, info);	i__1 = lendsv - lsv;	dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, 		info);    } else if (iscale == 2) {	i__1 = lendsv - lsv + 1;	dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 		n, info);	i__1 = lendsv - lsv;	dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, 		info);    }/*     Check for no convergence to an eigenvalue after a total *//*     of N*MAXIT iterations. */    if (jtot < nmaxit) {	goto L10;    }    i__1 = *n - 1;    for (i__ = 1; i__ <= i__1; ++i__) {	if (e[i__] != 0.) {	    ++(*info);	}/* L150: */    }    goto L190;/*     Order eigenvalues and eigenvectors. */L160:    if (icompz == 0) {/*        Use Quick Sort */	dlasrt_("I", n, &d__[1], info);    } else {/*        Use Selection Sort to minimize swaps of eigenvectors */	i__1 = *n;	for (ii = 2; ii <= i__1; ++ii) {	    i__ = ii - 1;	    k = i__;	    p = d__[i__];	    i__2 = *n;	    for (j = ii; j <= i__2; ++j) {		if (d__[j] < p) {		    k = j;		    p = d__[j];		}/* L170: */	    }	    if (k != i__) {		d__[k] = d__[i__];		d__[i__] = p;		dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1], 			 &c__1);	    }/* L180: */	}    }L190:    return 0;/*     End of DSTEQR */} /* dsteqr_ */
 |