| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 | /* dstedc.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__9 = 9;static integer c__0 = 0;static integer c__2 = 2;static doublereal c_b17 = 0.;static doublereal c_b18 = 1.;static integer c__1 = 1;/* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__, 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 	integer *lwork, integer *iwork, integer *liwork, integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double log(doublereal);    integer pow_ii(integer *, integer *);    double sqrt(doublereal);    /* Local variables */    integer i__, j, k, m;    doublereal p;    integer ii, lgn;    doublereal eps, tiny;    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer lwmin;    extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     integer *, doublereal *, integer *, integer *);    integer start;    extern doublereal dlamch_(char *);    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), dlacpy_(char *, integer *, integer 	    *, doublereal *, integer *, doublereal *, integer *), 	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int xerbla_(char *, integer *);    integer finish;    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 	     integer *), dlasrt_(char *, integer *, doublereal *, integer *);    integer liwmin, icompz;    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *);    doublereal orgnrm;    logical lquery;    integer smlsiz, storez, strtrw;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a *//*  symmetric tridiagonal matrix using the divide and conquer method. *//*  The eigenvectors of a full or band real symmetric matrix can also be *//*  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this *//*  matrix to tridiagonal form. *//*  This code makes very mild assumptions about floating point *//*  arithmetic. It will work on machines with a guard digit in *//*  add/subtract, or on those binary machines without guard digits *//*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. *//*  It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none.  See DLAED3 for details. *//*  Arguments *//*  ========= *//*  COMPZ   (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only. *//*          = 'I':  Compute eigenvectors of tridiagonal matrix also. *//*          = 'V':  Compute eigenvectors of original dense symmetric *//*                  matrix also.  On entry, Z contains the orthogonal *//*                  matrix used to reduce the original matrix to *//*                  tridiagonal form. *//*  N       (input) INTEGER *//*          The dimension of the symmetric tridiagonal matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the diagonal elements of the tridiagonal matrix. *//*          On exit, if INFO = 0, the eigenvalues in ascending order. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, the subdiagonal elements of the tridiagonal matrix. *//*          On exit, E has been destroyed. *//*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) *//*          On entry, if COMPZ = 'V', then Z contains the orthogonal *//*          matrix used in the reduction to tridiagonal form. *//*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the *//*          orthonormal eigenvectors of the original symmetric matrix, *//*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors *//*          of the symmetric tridiagonal matrix. *//*          If  COMPZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1. *//*          If eigenvectors are desired, then LDZ >= max(1,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, *//*                                         dimension (LWORK) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. *//*          If COMPZ = 'V' and N > 1 then LWORK must be at least *//*                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ), *//*                         where lg( N ) = smallest integer k such *//*                         that 2**k >= N. *//*          If COMPZ = 'I' and N > 1 then LWORK must be at least *//*                         ( 1 + 4*N + N**2 ). *//*          Note that for COMPZ = 'I' or 'V', then if N is less than or *//*          equal to the minimum divide size, usually 25, then LWORK need *//*          only be max(1,2*(N-1)). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) *//*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK. *//*          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. *//*          If COMPZ = 'V' and N > 1 then LIWORK must be at least *//*                         ( 6 + 6*N + 5*N*lg N ). *//*          If COMPZ = 'I' and N > 1 then LIWORK must be at least *//*                         ( 3 + 5*N ). *//*          Note that for COMPZ = 'I' or 'V', then if N is less than or *//*          equal to the minimum divide size, usually 25, then LIWORK *//*          need only be 1. *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the optimal size of the IWORK array, *//*          returns this value as the first entry of the IWORK array, and *//*          no error message related to LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  The algorithm failed to compute an eigenvalue while *//*                working on the submatrix lying in rows and columns *//*                INFO/(N+1) through mod(INFO,N+1). *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  Modified by Francoise Tisseur, University of Tennessee. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    --iwork;    /* Function Body */    *info = 0;    lquery = *lwork == -1 || *liwork == -1;    if (lsame_(compz, "N")) {	icompz = 0;    } else if (lsame_(compz, "V")) {	icompz = 1;    } else if (lsame_(compz, "I")) {	icompz = 2;    } else {	icompz = -1;    }    if (icompz < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {	*info = -6;    }    if (*info == 0) {/*        Compute the workspace requirements */	smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0);	if (*n <= 1 || icompz == 0) {	    liwmin = 1;	    lwmin = 1;	} else if (*n <= smlsiz) {	    liwmin = 1;	    lwmin = *n - 1 << 1;	} else {	    lgn = (integer) (log((doublereal) (*n)) / log(2.));	    if (pow_ii(&c__2, &lgn) < *n) {		++lgn;	    }	    if (pow_ii(&c__2, &lgn) < *n) {		++lgn;	    }	    if (icompz == 1) {/* Computing 2nd power */		i__1 = *n;		lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;		liwmin = *n * 6 + 6 + *n * 5 * lgn;	    } else if (icompz == 2) {/* Computing 2nd power */		i__1 = *n;		lwmin = (*n << 2) + 1 + i__1 * i__1;		liwmin = *n * 5 + 3;	    }	}	work[1] = (doublereal) lwmin;	iwork[1] = liwmin;	if (*lwork < lwmin && ! lquery) {	    *info = -8;	} else if (*liwork < liwmin && ! lquery) {	    *info = -10;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSTEDC", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (icompz != 0) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }/*     If the following conditional clause is removed, then the routine *//*     will use the Divide and Conquer routine to compute only the *//*     eigenvalues, which requires (3N + 3N**2) real workspace and *//*     (2 + 5N + 2N lg(N)) integer workspace. *//*     Since on many architectures DSTERF is much faster than any other *//*     algorithm for finding eigenvalues only, it is used here *//*     as the default. If the conditional clause is removed, then *//*     information on the size of workspace needs to be changed. *//*     If COMPZ = 'N', use DSTERF to compute the eigenvalues. */    if (icompz == 0) {	dsterf_(n, &d__[1], &e[1], info);	goto L50;    }/*     If N is smaller than the minimum divide size (SMLSIZ+1), then *//*     solve the problem with another solver. */    if (*n <= smlsiz) {	dsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);    } else {/*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later *//*        use. */	if (icompz == 1) {	    storez = *n * *n + 1;	} else {	    storez = 1;	}	if (icompz == 2) {	    dlaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);	}/*        Scale. */	orgnrm = dlanst_("M", n, &d__[1], &e[1]);	if (orgnrm == 0.) {	    goto L50;	}	eps = dlamch_("Epsilon");	start = 1;/*        while ( START <= N ) */L10:	if (start <= *n) {/*           Let FINISH be the position of the next subdiagonal entry *//*           such that E( FINISH ) <= TINY or FINISH = N if no such *//*           subdiagonal exists.  The matrix identified by the elements *//*           between START and FINISH constitutes an independent *//*           sub-problem. */	    finish = start;L20:	    if (finish < *n) {		tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((			d__2 = d__[finish + 1], abs(d__2)));		if ((d__1 = e[finish], abs(d__1)) > tiny) {		    ++finish;		    goto L20;		}	    }/*           (Sub) Problem determined.  Compute its size and solve it. */	    m = finish - start + 1;	    if (m == 1) {		start = finish + 1;		goto L10;	    }	    if (m > smlsiz) {/*              Scale. */		orgnrm = dlanst_("M", &m, &d__[start], &e[start]);		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[			start], &m, info);		i__1 = m - 1;		i__2 = m - 1;		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[			start], &i__2, info);		if (icompz == 1) {		    strtrw = 1;		} else {		    strtrw = start;		}		dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw + 			start * z_dim1], ldz, &work[1], n, &work[storez], &			iwork[1], info);		if (*info != 0) {		    *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %			     (m + 1) + start - 1;		    goto L50;		}/*              Scale back. */		dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[			start], &m, info);	    } else {		if (icompz == 1) {/*                 Since QR won't update a Z matrix which is larger than *//*                 the length of D, we must solve the sub-problem in a *//*                 workspace and then multiply back into Z. */		    dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &			    work[m * m + 1], info);		    dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[			    storez], n);		    dgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &			    work[1], &m, &c_b17, &z__[start * z_dim1 + 1], 			    ldz);		} else if (icompz == 2) {		    dsteqr_("I", &m, &d__[start], &e[start], &z__[start + 			    start * z_dim1], ldz, &work[1], info);		} else {		    dsterf_(&m, &d__[start], &e[start], info);		}		if (*info != 0) {		    *info = start * (*n + 1) + finish;		    goto L50;		}	    }	    start = finish + 1;	    goto L10;	}/*        endwhile *//*        If the problem split any number of times, then the eigenvalues *//*        will not be properly ordered.  Here we permute the eigenvalues *//*        (and the associated eigenvectors) into ascending order. */	if (m != *n) {	    if (icompz == 0) {/*              Use Quick Sort */		dlasrt_("I", n, &d__[1], info);	    } else {/*              Use Selection Sort to minimize swaps of eigenvectors */		i__1 = *n;		for (ii = 2; ii <= i__1; ++ii) {		    i__ = ii - 1;		    k = i__;		    p = d__[i__];		    i__2 = *n;		    for (j = ii; j <= i__2; ++j) {			if (d__[j] < p) {			    k = j;			    p = d__[j];			}/* L30: */		    }		    if (k != i__) {			d__[k] = d__[i__];			d__[i__] = p;			dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * 				z_dim1 + 1], &c__1);		    }/* L40: */		}	    }	}    }L50:    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    return 0;/*     End of DSTEDC */} /* dstedc_ */
 |