| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 | /* dptrfs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b11 = 1.;/* Subroutine */ int dptrfs_(integer *n, integer *nrhs, doublereal *d__, 	doublereal *e, doublereal *df, doublereal *ef, doublereal *b, integer 	*ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, 	 doublereal *work, integer *info){    /* System generated locals */    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;    doublereal d__1, d__2, d__3;    /* Local variables */    integer i__, j;    doublereal s, bi, cx, dx, ex;    integer ix, nz;    doublereal eps, safe1, safe2;    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *);    integer count;    extern doublereal dlamch_(char *);    extern integer idamax_(integer *, doublereal *, integer *);    doublereal safmin;    extern /* Subroutine */ int xerbla_(char *, integer *);    doublereal lstres;    extern /* Subroutine */ int dpttrs_(integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPTRFS improves the computed solution to a system of linear *//*  equations when the coefficient matrix is symmetric positive definite *//*  and tridiagonal, and provides error bounds and backward error *//*  estimates for the solution. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the tridiagonal matrix A. *//*  E       (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) subdiagonal elements of the tridiagonal matrix A. *//*  DF      (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the diagonal matrix D from the *//*          factorization computed by DPTTRF. *//*  EF      (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) subdiagonal elements of the unit bidiagonal factor *//*          L from the factorization computed by DPTTRF. *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          The right hand side matrix B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          On entry, the solution matrix X, as computed by DPTTRS. *//*          On exit, the improved solution matrix X. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(1,N). *//*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The forward error bound for each solution vector *//*          X(j) (the j-th column of the solution matrix X). *//*          If XTRUE is the true solution corresponding to X(j), FERR(j) *//*          is an estimated upper bound for the magnitude of the largest *//*          element in (X(j) - XTRUE) divided by the magnitude of the *//*          largest element in X(j). *//*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The componentwise relative backward error of each solution *//*          vector X(j) (i.e., the smallest relative change in *//*          any element of A or B that makes X(j) an exact solution). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Internal Parameters *//*  =================== *//*  ITMAX is the maximum number of steps of iterative refinement. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    --df;    --ef;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --ferr;    --berr;    --work;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*nrhs < 0) {	*info = -2;    } else if (*ldb < max(1,*n)) {	*info = -8;    } else if (*ldx < max(1,*n)) {	*info = -10;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPTRFS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0 || *nrhs == 0) {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    ferr[j] = 0.;	    berr[j] = 0.;/* L10: */	}	return 0;    }/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */    nz = 4;    eps = dlamch_("Epsilon");    safmin = dlamch_("Safe minimum");    safe1 = nz * safmin;    safe2 = safe1 / eps;/*     Do for each right hand side */    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {	count = 1;	lstres = 3.;L20:/*        Loop until stopping criterion is satisfied. *//*        Compute residual R = B - A * X.  Also compute *//*        abs(A)*abs(x) + abs(b) for use in the backward error bound. */	if (*n == 1) {	    bi = b[j * b_dim1 + 1];	    dx = d__[1] * x[j * x_dim1 + 1];	    work[*n + 1] = bi - dx;	    work[1] = abs(bi) + abs(dx);	} else {	    bi = b[j * b_dim1 + 1];	    dx = d__[1] * x[j * x_dim1 + 1];	    ex = e[1] * x[j * x_dim1 + 2];	    work[*n + 1] = bi - dx - ex;	    work[1] = abs(bi) + abs(dx) + abs(ex);	    i__2 = *n - 1;	    for (i__ = 2; i__ <= i__2; ++i__) {		bi = b[i__ + j * b_dim1];		cx = e[i__ - 1] * x[i__ - 1 + j * x_dim1];		dx = d__[i__] * x[i__ + j * x_dim1];		ex = e[i__] * x[i__ + 1 + j * x_dim1];		work[*n + i__] = bi - cx - dx - ex;		work[i__] = abs(bi) + abs(cx) + abs(dx) + abs(ex);/* L30: */	    }	    bi = b[*n + j * b_dim1];	    cx = e[*n - 1] * x[*n - 1 + j * x_dim1];	    dx = d__[*n] * x[*n + j * x_dim1];	    work[*n + *n] = bi - cx - dx;	    work[*n] = abs(bi) + abs(cx) + abs(dx);	}/*        Compute componentwise relative backward error from formula *//*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) *//*        where abs(Z) is the componentwise absolute value of the matrix *//*        or vector Z.  If the i-th component of the denominator is less *//*        than SAFE2, then SAFE1 is added to the i-th components of the *//*        numerator and denominator before dividing. */	s = 0.;	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    if (work[i__] > safe2) {/* Computing MAX */		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[			i__];		s = max(d__2,d__3);	    } else {/* Computing MAX */		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 			/ (work[i__] + safe1);		s = max(d__2,d__3);	    }/* L40: */	}	berr[j] = s;/*        Test stopping criterion. Continue iterating if *//*           1) The residual BERR(J) is larger than machine epsilon, and *//*           2) BERR(J) decreased by at least a factor of 2 during the *//*              last iteration, and *//*           3) At most ITMAX iterations tried. */	if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {/*           Update solution and try again. */	    dpttrs_(n, &c__1, &df[1], &ef[1], &work[*n + 1], n, info);	    daxpy_(n, &c_b11, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)		    ;	    lstres = berr[j];	    ++count;	    goto L20;	}/*        Bound error from formula *//*        norm(X - XTRUE) / norm(X) .le. FERR = *//*        norm( abs(inv(A))* *//*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) *//*        where *//*          norm(Z) is the magnitude of the largest component of Z *//*          inv(A) is the inverse of A *//*          abs(Z) is the componentwise absolute value of the matrix or *//*             vector Z *//*          NZ is the maximum number of nonzeros in any row of A, plus 1 *//*          EPS is machine epsilon *//*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) *//*        is incremented by SAFE1 if the i-th component of *//*        abs(A)*abs(X) + abs(B) is less than SAFE2. */	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    if (work[i__] > safe2) {		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 			work[i__];	    } else {		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 			work[i__] + safe1;	    }/* L50: */	}	ix = idamax_(n, &work[1], &c__1);	ferr[j] = work[ix];/*        Estimate the norm of inv(A). *//*        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by *//*           m(i,j) =  abs(A(i,j)), i = j, *//*           m(i,j) = -abs(A(i,j)), i .ne. j, *//*        and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'. *//*        Solve M(L) * x = e. */	work[1] = 1.;	i__2 = *n;	for (i__ = 2; i__ <= i__2; ++i__) {	    work[i__] = work[i__ - 1] * (d__1 = ef[i__ - 1], abs(d__1)) + 1.;/* L60: */	}/*        Solve D * M(L)' * x = b. */	work[*n] /= df[*n];	for (i__ = *n - 1; i__ >= 1; --i__) {	    work[i__] = work[i__] / df[i__] + work[i__ + 1] * (d__1 = ef[i__],		     abs(d__1));/* L70: */	}/*        Compute norm(inv(A)) = max(x(i)), 1<=i<=n. */	ix = idamax_(n, &work[1], &c__1);	ferr[j] *= (d__1 = work[ix], abs(d__1));/*        Normalize error. */	lstres = 0.;	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */	    d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));	    lstres = max(d__2,d__3);/* L80: */	}	if (lstres != 0.) {	    ferr[j] /= lstres;	}/* L90: */    }    return 0;/*     End of DPTRFS */} /* dptrfs_ */
 |