| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | /* dpptri.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b8 = 1.;static integer c__1 = 1;/* Subroutine */ int dpptri_(char *uplo, integer *n, doublereal *ap, integer *	info){    /* System generated locals */    integer i__1, i__2;    /* Local variables */    integer j, jc, jj;    doublereal ajj;    integer jjn;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    extern /* Subroutine */ int dspr_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *), dscal_(integer *, 	    doublereal *, doublereal *, integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, 	    doublereal *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *), dtptri_(	    char *, char *, integer *, doublereal *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPPTRI computes the inverse of a real symmetric positive definite *//*  matrix A using the Cholesky factorization A = U**T*U or A = L*L**T *//*  computed by DPPTRF. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangular factor is stored in AP; *//*          = 'L':  Lower triangular factor is stored in AP. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the triangular factor U or L from the Cholesky *//*          factorization A = U**T*U or A = L*L**T, packed columnwise as *//*          a linear array.  The j-th column of U or L is stored in the *//*          array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. *//*          On exit, the upper or lower triangle of the (symmetric) *//*          inverse of A, overwriting the input factor U or L. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the (i,i) element of the factor U or L is *//*                zero, and the inverse could not be computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPPTRI", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Invert the triangular Cholesky factor U or L. */    dtptri_(uplo, "Non-unit", n, &ap[1], info);    if (*info > 0) {	return 0;    }    if (upper) {/*        Compute the product inv(U) * inv(U)'. */	jj = 0;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    jc = jj + 1;	    jj += j;	    if (j > 1) {		i__2 = j - 1;		dspr_("Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1]);	    }	    ajj = ap[jj];	    dscal_(&j, &ajj, &ap[jc], &c__1);/* L10: */	}    } else {/*        Compute the product inv(L)' * inv(L). */	jj = 1;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    jjn = jj + *n - j + 1;	    i__2 = *n - j + 1;	    ap[jj] = ddot_(&i__2, &ap[jj], &c__1, &ap[jj], &c__1);	    if (j < *n) {		i__2 = *n - j;		dtpmv_("Lower", "Transpose", "Non-unit", &i__2, &ap[jjn], &ap[			jj + 1], &c__1);	    }	    jj = jjn;/* L20: */	}    }    return 0;/*     End of DPPTRI */} /* dpptri_ */
 |