| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 | /* dppsvx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dppsvx_(char *fact, char *uplo, integer *n, integer *	nrhs, doublereal *ap, doublereal *afp, char *equed, doublereal *s, 	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *	iwork, integer *info){    /* System generated locals */    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;    doublereal d__1, d__2;    /* Local variables */    integer i__, j;    doublereal amax, smin, smax;    extern logical lsame_(char *, char *);    doublereal scond, anorm;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    logical equil, rcequ;    extern doublereal dlamch_(char *);    logical nofact;    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    xerbla_(char *, integer *);    doublereal bignum;    extern doublereal dlansp_(char *, char *, integer *, doublereal *, 	    doublereal *);    extern /* Subroutine */ int dppcon_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *), dlaqsp_(char *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, char *);    integer infequ;    extern /* Subroutine */ int dppequ_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    dpprfs_(char *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, integer *), 	    dpptrf_(char *, integer *, doublereal *, integer *);    doublereal smlnum;    extern /* Subroutine */ int dpptrs_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to *//*  compute the solution to a real system of linear equations *//*     A * X = B, *//*  where A is an N-by-N symmetric positive definite matrix stored in *//*  packed format and X and B are N-by-NRHS matrices. *//*  Error bounds on the solution and a condition estimate are also *//*  provided. *//*  Description *//*  =========== *//*  The following steps are performed: *//*  1. If FACT = 'E', real scaling factors are computed to equilibrate *//*     the system: *//*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B *//*     Whether or not the system will be equilibrated depends on the *//*     scaling of the matrix A, but if equilibration is used, A is *//*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. *//*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to *//*     factor the matrix A (after equilibration if FACT = 'E') as *//*        A = U**T* U,  if UPLO = 'U', or *//*        A = L * L**T,  if UPLO = 'L', *//*     where U is an upper triangular matrix and L is a lower triangular *//*     matrix. *//*  3. If the leading i-by-i principal minor is not positive definite, *//*     then the routine returns with INFO = i. Otherwise, the factored *//*     form of A is used to estimate the condition number of the matrix *//*     A.  If the reciprocal of the condition number is less than machine *//*     precision, INFO = N+1 is returned as a warning, but the routine *//*     still goes on to solve for X and compute error bounds as *//*     described below. *//*  4. The system of equations is solved for X using the factored form *//*     of A. *//*  5. Iterative refinement is applied to improve the computed solution *//*     matrix and calculate error bounds and backward error estimates *//*     for it. *//*  6. If equilibration was used, the matrix X is premultiplied by *//*     diag(S) so that it solves the original system before *//*     equilibration. *//*  Arguments *//*  ========= *//*  FACT    (input) CHARACTER*1 *//*          Specifies whether or not the factored form of the matrix A is *//*          supplied on entry, and if not, whether the matrix A should be *//*          equilibrated before it is factored. *//*          = 'F':  On entry, AFP contains the factored form of A. *//*                  If EQUED = 'Y', the matrix A has been equilibrated *//*                  with scaling factors given by S.  AP and AFP will not *//*                  be modified. *//*          = 'N':  The matrix A will be copied to AFP and factored. *//*          = 'E':  The matrix A will be equilibrated if necessary, then *//*                  copied to AFP and factored. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrices B and X.  NRHS >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          A, packed columnwise in a linear array, except if FACT = 'F' *//*          and EQUED = 'Y', then A must contain the equilibrated matrix *//*          diag(S)*A*diag(S).  The j-th column of A is stored in the *//*          array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*          See below for further details.  A is not modified if *//*          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. *//*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by *//*          diag(S)*A*diag(S). *//*  AFP     (input or output) DOUBLE PRECISION array, dimension *//*                            (N*(N+1)/2) *//*          If FACT = 'F', then AFP is an input argument and on entry *//*          contains the triangular factor U or L from the Cholesky *//*          factorization A = U'*U or A = L*L', in the same storage *//*          format as A.  If EQUED .ne. 'N', then AFP is the factored *//*          form of the equilibrated matrix A. *//*          If FACT = 'N', then AFP is an output argument and on exit *//*          returns the triangular factor U or L from the Cholesky *//*          factorization A = U'*U or A = L*L' of the original matrix A. *//*          If FACT = 'E', then AFP is an output argument and on exit *//*          returns the triangular factor U or L from the Cholesky *//*          factorization A = U'*U or A = L*L' of the equilibrated *//*          matrix A (see the description of AP for the form of the *//*          equilibrated matrix). *//*  EQUED   (input or output) CHARACTER*1 *//*          Specifies the form of equilibration that was done. *//*          = 'N':  No equilibration (always true if FACT = 'N'). *//*          = 'Y':  Equilibration was done, i.e., A has been replaced by *//*                  diag(S) * A * diag(S). *//*          EQUED is an input argument if FACT = 'F'; otherwise, it is an *//*          output argument. *//*  S       (input or output) DOUBLE PRECISION array, dimension (N) *//*          The scale factors for A; not accessed if EQUED = 'N'.  S is *//*          an input argument if FACT = 'F'; otherwise, S is an output *//*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S *//*          must be positive. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N-by-NRHS right hand side matrix B. *//*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', *//*          B is overwritten by diag(S) * B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to *//*          the original system of equations.  Note that if EQUED = 'Y', *//*          A and B are modified on exit, and the solution to the *//*          equilibrated system is inv(diag(S))*X. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(1,N). *//*  RCOND   (output) DOUBLE PRECISION *//*          The estimate of the reciprocal condition number of the matrix *//*          A after equilibration (if done).  If RCOND is less than the *//*          machine precision (in particular, if RCOND = 0), the matrix *//*          is singular to working precision.  This condition is *//*          indicated by a return code of INFO > 0. *//*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The estimated forward error bound for each solution vector *//*          X(j) (the j-th column of the solution matrix X). *//*          If XTRUE is the true solution corresponding to X(j), FERR(j) *//*          is an estimated upper bound for the magnitude of the largest *//*          element in (X(j) - XTRUE) divided by the magnitude of the *//*          largest element in X(j).  The estimate is as reliable as *//*          the estimate for RCOND, and is almost always a slight *//*          overestimate of the true error. *//*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*          The componentwise relative backward error of each solution *//*          vector X(j) (i.e., the smallest relative change in *//*          any element of A or B that makes X(j) an exact solution). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, and i is *//*                <= N:  the leading minor of order i of A is *//*                       not positive definite, so the factorization *//*                       could not be completed, and the solution has not *//*                       been computed. RCOND = 0 is returned. *//*                = N+1: U is nonsingular, but RCOND is less than machine *//*                       precision, meaning that the matrix is singular *//*                       to working precision.  Nevertheless, the *//*                       solution and error bounds are computed because *//*                       there are a number of situations where the *//*                       computed solution can be more accurate than the *//*                       value of RCOND would suggest. *//*  Further Details *//*  =============== *//*  The packed storage scheme is illustrated by the following example *//*  when N = 4, UPLO = 'U': *//*  Two-dimensional storage of the symmetric matrix A: *//*     a11 a12 a13 a14 *//*         a22 a23 a24 *//*             a33 a34     (aij = conjg(aji)) *//*                 a44 *//*  Packed storage of the upper triangle of A: *//*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --ap;    --afp;    --s;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --ferr;    --berr;    --work;    --iwork;    /* Function Body */    *info = 0;    nofact = lsame_(fact, "N");    equil = lsame_(fact, "E");    if (nofact || equil) {	*(unsigned char *)equed = 'N';	rcequ = FALSE_;    } else {	rcequ = lsame_(equed, "Y");	smlnum = dlamch_("Safe minimum");	bignum = 1. / smlnum;    }/*     Test the input parameters. */    if (! nofact && ! equil && ! lsame_(fact, "F")) {	*info = -1;    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 	    "L")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(	    equed, "N"))) {	*info = -7;    } else {	if (rcequ) {	    smin = bignum;	    smax = 0.;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {/* Computing MIN */		d__1 = smin, d__2 = s[j];		smin = min(d__1,d__2);/* Computing MAX */		d__1 = smax, d__2 = s[j];		smax = max(d__1,d__2);/* L10: */	    }	    if (smin <= 0.) {		*info = -8;	    } else if (*n > 0) {		scond = max(smin,smlnum) / min(smax,bignum);	    } else {		scond = 1.;	    }	}	if (*info == 0) {	    if (*ldb < max(1,*n)) {		*info = -10;	    } else if (*ldx < max(1,*n)) {		*info = -12;	    }	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPPSVX", &i__1);	return 0;    }    if (equil) {/*        Compute row and column scalings to equilibrate the matrix A. */	dppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ);	if (infequ == 0) {/*           Equilibrate the matrix. */	    dlaqsp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed);	    rcequ = lsame_(equed, "Y");	}    }/*     Scale the right-hand side. */    if (rcequ) {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    i__2 = *n;	    for (i__ = 1; i__ <= i__2; ++i__) {		b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];/* L20: */	    }/* L30: */	}    }    if (nofact || equil) {/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */	i__1 = *n * (*n + 1) / 2;	dcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);	dpptrf_(uplo, n, &afp[1], info);/*        Return if INFO is non-zero. */	if (*info > 0) {	    *rcond = 0.;	    return 0;	}    }/*     Compute the norm of the matrix A. */    anorm = dlansp_("I", uplo, n, &ap[1], &work[1]);/*     Compute the reciprocal of the condition number of A. */    dppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &iwork[1], info);/*     Compute the solution matrix X. */    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    dpptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info);/*     Use iterative refinement to improve the computed solution and *//*     compute error bounds and backward error estimates for it. */    dpprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset], 	    ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);/*     Transform the solution matrix X to a solution of the original *//*     system. */    if (rcequ) {	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    i__2 = *n;	    for (i__ = 1; i__ <= i__2; ++i__) {		x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];/* L40: */	    }/* L50: */	}	i__1 = *nrhs;	for (j = 1; j <= i__1; ++j) {	    ferr[j] /= scond;/* L60: */	}    }/*     Set INFO = N+1 if the matrix is singular to working precision. */    if (*rcond < dlamch_("Epsilon")) {	*info = *n + 1;    }    return 0;/*     End of DPPSVX */} /* dppsvx_ */
 |