| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 | /* dppequ.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dppequ_(char *uplo, integer *n, doublereal *ap, 	doublereal *s, doublereal *scond, doublereal *amax, integer *info){    /* System generated locals */    integer i__1;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, jj;    doublereal smin;    extern logical lsame_(char *, char *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPPEQU computes row and column scalings intended to equilibrate a *//*  symmetric positive definite matrix A in packed storage and reduce *//*  its condition number (with respect to the two-norm).  S contains the *//*  scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix *//*  B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal. *//*  This choice of S puts the condition number of B within a factor N of *//*  the smallest possible condition number over all possible diagonal *//*  scalings. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          The upper or lower triangle of the symmetric matrix A, packed *//*          columnwise in a linear array.  The j-th column of A is stored *//*          in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*  S       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, S contains the scale factors for A. *//*  SCOND   (output) DOUBLE PRECISION *//*          If INFO = 0, S contains the ratio of the smallest S(i) to *//*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too *//*          large nor too small, it is not worth scaling by S. *//*  AMAX    (output) DOUBLE PRECISION *//*          Absolute value of largest matrix element.  If AMAX is very *//*          close to overflow or very close to underflow, the matrix *//*          should be scaled. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --s;    --ap;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPPEQU", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	*scond = 1.;	*amax = 0.;	return 0;    }/*     Initialize SMIN and AMAX. */    s[1] = ap[1];    smin = s[1];    *amax = s[1];    if (upper) {/*        UPLO = 'U':  Upper triangle of A is stored. *//*        Find the minimum and maximum diagonal elements. */	jj = 1;	i__1 = *n;	for (i__ = 2; i__ <= i__1; ++i__) {	    jj += i__;	    s[i__] = ap[jj];/* Computing MIN */	    d__1 = smin, d__2 = s[i__];	    smin = min(d__1,d__2);/* Computing MAX */	    d__1 = *amax, d__2 = s[i__];	    *amax = max(d__1,d__2);/* L10: */	}    } else {/*        UPLO = 'L':  Lower triangle of A is stored. *//*        Find the minimum and maximum diagonal elements. */	jj = 1;	i__1 = *n;	for (i__ = 2; i__ <= i__1; ++i__) {	    jj = jj + *n - i__ + 2;	    s[i__] = ap[jj];/* Computing MIN */	    d__1 = smin, d__2 = s[i__];	    smin = min(d__1,d__2);/* Computing MAX */	    d__1 = *amax, d__2 = s[i__];	    *amax = max(d__1,d__2);/* L20: */	}    }    if (smin <= 0.) {/*        Find the first non-positive diagonal element and return. */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (s[i__] <= 0.) {		*info = i__;		return 0;	    }/* L30: */	}    } else {/*        Set the scale factors to the reciprocals *//*        of the diagonal elements. */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    s[i__] = 1. / sqrt(s[i__]);/* L40: */	}/*        Compute SCOND = min(S(I)) / max(S(I)) */	*scond = sqrt(smin) / sqrt(*amax);    }    return 0;/*     End of DPPEQU */} /* dppequ_ */
 |