| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 | /* dpbsv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dpbsv_(char *uplo, integer *n, integer *kd, integer *	nrhs, doublereal *ab, integer *ldab, doublereal *b, integer *ldb, 	integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;    /* Local variables */    extern logical lsame_(char *, char *);    extern /* Subroutine */ int xerbla_(char *, integer *), dpbtrf_(	    char *, integer *, integer *, doublereal *, integer *, integer *), dpbtrs_(char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPBSV computes the solution to a real system of linear equations *//*     A * X = B, *//*  where A is an N-by-N symmetric positive definite band matrix and X *//*  and B are N-by-NRHS matrices. *//*  The Cholesky decomposition is used to factor A as *//*     A = U**T * U,  if UPLO = 'U', or *//*     A = L * L**T,  if UPLO = 'L', *//*  where U is an upper triangular band matrix, and L is a lower *//*  triangular band matrix, with the same number of superdiagonals or *//*  subdiagonals as A.  The factored form of A is then used to solve the *//*  system of equations A * X = B. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  KD      (input) INTEGER *//*          The number of superdiagonals of the matrix A if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix A, stored in the first KD+1 rows of the array.  The *//*          j-th column of A is stored in the j-th column of the array AB *//*          as follows: *//*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD). *//*          See below for further details. *//*          On exit, if INFO = 0, the triangular factor U or L from the *//*          Cholesky factorization A = U**T*U or A = L*L**T of the band *//*          matrix A, in the same storage format as A. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KD+1. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N-by-NRHS right hand side matrix B. *//*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the leading minor of order i of A is not *//*                positive definite, so the factorization could not be *//*                completed, and the solution has not been computed. *//*  Further Details *//*  =============== *//*  The band storage scheme is illustrated by the following example, when *//*  N = 6, KD = 2, and UPLO = 'U': *//*  On entry:                       On exit: *//*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 *//*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 *//*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 *//*  Similarly, if UPLO = 'L' the format of A is as follows: *//*  On entry:                       On exit: *//*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 *//*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * *//*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * *//*  Array elements marked * are not used by the routine. *//*  ===================================================================== *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kd < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*ldab < *kd + 1) {	*info = -6;    } else if (*ldb < max(1,*n)) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPBSV ", &i__1);	return 0;    }/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */    dpbtrf_(uplo, n, kd, &ab[ab_offset], ldab, info);    if (*info == 0) {/*        Solve the system A*X = B, overwriting B with X. */	dpbtrs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &b[b_offset], ldb, 		info);    }    return 0;/*     End of DPBSV */} /* dpbsv_ */
 |