| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 | /* dpbstf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b9 = -1.;/* Subroutine */ int dpbstf_(char *uplo, integer *n, integer *kd, doublereal *	ab, integer *ldab, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, i__1, i__2, i__3;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer j, m, km;    doublereal ajj;    integer kld;    extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *), dscal_(	    integer *, doublereal *, doublereal *, integer *);    extern logical lsame_(char *, char *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPBSTF computes a split Cholesky factorization of a real *//*  symmetric positive definite band matrix A. *//*  This routine is designed to be used in conjunction with DSBGST. *//*  The factorization has the form  A = S**T*S  where S is a band matrix *//*  of the same bandwidth as A and the following structure: *//*    S = ( U    ) *//*        ( M  L ) *//*  where U is upper triangular of order m = (n+kd)/2, and L is lower *//*  triangular of order n-m. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KD      (input) INTEGER *//*          The number of superdiagonals of the matrix A if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix A, stored in the first kd+1 rows of the array.  The *//*          j-th column of A is stored in the j-th column of the array AB *//*          as follows: *//*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). *//*          On exit, if INFO = 0, the factor S from the split Cholesky *//*          factorization A = S**T*S. See Further Details. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KD+1. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0: if INFO = i, the factorization could not be completed, *//*               because the updated element a(i,i) was negative; the *//*               matrix A is not positive definite. *//*  Further Details *//*  =============== *//*  The band storage scheme is illustrated by the following example, when *//*  N = 7, KD = 2: *//*  S = ( s11  s12  s13                     ) *//*      (      s22  s23  s24                ) *//*      (           s33  s34                ) *//*      (                s44                ) *//*      (           s53  s54  s55           ) *//*      (                s64  s65  s66      ) *//*      (                     s75  s76  s77 ) *//*  If UPLO = 'U', the array AB holds: *//*  on entry:                          on exit: *//*   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53  s64  s75 *//*   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54  s65  s76 *//*  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77 *//*  If UPLO = 'L', the array AB holds: *//*  on entry:                          on exit: *//*  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77 *//*  a21  a32  a43  a54  a65  a76   *   s12  s23  s34  s54  s65  s76   * *//*  a31  a42  a53  a64  a64   *    *   s13  s24  s53  s64  s75   *    * *//*  Array elements marked * are not used by the routine. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kd < 0) {	*info = -3;    } else if (*ldab < *kd + 1) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPBSTF", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/* Computing MAX */    i__1 = 1, i__2 = *ldab - 1;    kld = max(i__1,i__2);/*     Set the splitting point m. */    m = (*n + *kd) / 2;    if (upper) {/*        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m). */	i__1 = m + 1;	for (j = *n; j >= i__1; --j) {/*           Compute s(j,j) and test for non-positive-definiteness. */	    ajj = ab[*kd + 1 + j * ab_dim1];	    if (ajj <= 0.) {		goto L50;	    }	    ajj = sqrt(ajj);	    ab[*kd + 1 + j * ab_dim1] = ajj;/* Computing MIN */	    i__2 = j - 1;	    km = min(i__2,*kd);/*           Compute elements j-km:j-1 of the j-th column and update the *//*           the leading submatrix within the band. */	    d__1 = 1. / ajj;	    dscal_(&km, &d__1, &ab[*kd + 1 - km + j * ab_dim1], &c__1);	    dsyr_("Upper", &km, &c_b9, &ab[*kd + 1 - km + j * ab_dim1], &c__1, 		     &ab[*kd + 1 + (j - km) * ab_dim1], &kld);/* L10: */	}/*        Factorize the updated submatrix A(1:m,1:m) as U**T*U. */	i__1 = m;	for (j = 1; j <= i__1; ++j) {/*           Compute s(j,j) and test for non-positive-definiteness. */	    ajj = ab[*kd + 1 + j * ab_dim1];	    if (ajj <= 0.) {		goto L50;	    }	    ajj = sqrt(ajj);	    ab[*kd + 1 + j * ab_dim1] = ajj;/* Computing MIN */	    i__2 = *kd, i__3 = m - j;	    km = min(i__2,i__3);/*           Compute elements j+1:j+km of the j-th row and update the *//*           trailing submatrix within the band. */	    if (km > 0) {		d__1 = 1. / ajj;		dscal_(&km, &d__1, &ab[*kd + (j + 1) * ab_dim1], &kld);		dsyr_("Upper", &km, &c_b9, &ab[*kd + (j + 1) * ab_dim1], &kld, 			 &ab[*kd + 1 + (j + 1) * ab_dim1], &kld);	    }/* L20: */	}    } else {/*        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m). */	i__1 = m + 1;	for (j = *n; j >= i__1; --j) {/*           Compute s(j,j) and test for non-positive-definiteness. */	    ajj = ab[j * ab_dim1 + 1];	    if (ajj <= 0.) {		goto L50;	    }	    ajj = sqrt(ajj);	    ab[j * ab_dim1 + 1] = ajj;/* Computing MIN */	    i__2 = j - 1;	    km = min(i__2,*kd);/*           Compute elements j-km:j-1 of the j-th row and update the *//*           trailing submatrix within the band. */	    d__1 = 1. / ajj;	    dscal_(&km, &d__1, &ab[km + 1 + (j - km) * ab_dim1], &kld);	    dsyr_("Lower", &km, &c_b9, &ab[km + 1 + (j - km) * ab_dim1], &kld, 		     &ab[(j - km) * ab_dim1 + 1], &kld);/* L30: */	}/*        Factorize the updated submatrix A(1:m,1:m) as U**T*U. */	i__1 = m;	for (j = 1; j <= i__1; ++j) {/*           Compute s(j,j) and test for non-positive-definiteness. */	    ajj = ab[j * ab_dim1 + 1];	    if (ajj <= 0.) {		goto L50;	    }	    ajj = sqrt(ajj);	    ab[j * ab_dim1 + 1] = ajj;/* Computing MIN */	    i__2 = *kd, i__3 = m - j;	    km = min(i__2,i__3);/*           Compute elements j+1:j+km of the j-th column and update the *//*           trailing submatrix within the band. */	    if (km > 0) {		d__1 = 1. / ajj;		dscal_(&km, &d__1, &ab[j * ab_dim1 + 2], &c__1);		dsyr_("Lower", &km, &c_b9, &ab[j * ab_dim1 + 2], &c__1, &ab[(			j + 1) * ab_dim1 + 1], &kld);	    }/* L40: */	}    }    return 0;L50:    *info = j;    return 0;/*     End of DPBSTF */} /* dpbstf_ */
 |