| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 | /* dpbcon.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dpbcon_(char *uplo, integer *n, integer *kd, doublereal *	ab, integer *ldab, doublereal *anorm, doublereal *rcond, doublereal *	work, integer *iwork, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, i__1;    doublereal d__1;    /* Local variables */    integer ix, kase;    doublereal scale;    extern logical lsame_(char *, char *);    integer isave[3];    extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *, 	    integer *);    logical upper;    extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *);    extern doublereal dlamch_(char *);    doublereal scalel;    extern integer idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int dlatbs_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *);    doublereal scaleu;    extern /* Subroutine */ int xerbla_(char *, integer *);    doublereal ainvnm;    char normin[1];    doublereal smlnum;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPBCON estimates the reciprocal of the condition number (in the *//*  1-norm) of a real symmetric positive definite band matrix using the *//*  Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF. *//*  An estimate is obtained for norm(inv(A)), and the reciprocal of the *//*  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangular factor stored in AB; *//*          = 'L':  Lower triangular factor stored in AB. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  KD      (input) INTEGER *//*          The number of superdiagonals of the matrix A if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. *//*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) *//*          The triangular factor U or L from the Cholesky factorization *//*          A = U**T*U or A = L*L**T of the band matrix A, stored in the *//*          first KD+1 rows of the array.  The j-th column of U or L is *//*          stored in the j-th column of the array AB as follows: *//*          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; *//*          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd). *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KD+1. *//*  ANORM   (input) DOUBLE PRECISION *//*          The 1-norm (or infinity-norm) of the symmetric band matrix A. *//*  RCOND   (output) DOUBLE PRECISION *//*          The reciprocal of the condition number of the matrix A, *//*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an *//*          estimate of the 1-norm of inv(A) computed in this routine. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  IWORK   (workspace) INTEGER array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --work;    --iwork;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*kd < 0) {	*info = -3;    } else if (*ldab < *kd + 1) {	*info = -5;    } else if (*anorm < 0.) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPBCON", &i__1);	return 0;    }/*     Quick return if possible */    *rcond = 0.;    if (*n == 0) {	*rcond = 1.;	return 0;    } else if (*anorm == 0.) {	return 0;    }    smlnum = dlamch_("Safe minimum");/*     Estimate the 1-norm of the inverse. */    kase = 0;    *(unsigned char *)normin = 'N';L10:    dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);    if (kase != 0) {	if (upper) {/*           Multiply by inv(U'). */	    dlatbs_("Upper", "Transpose", "Non-unit", normin, n, kd, &ab[		    ab_offset], ldab, &work[1], &scalel, &work[(*n << 1) + 1], 		     info);	    *(unsigned char *)normin = 'Y';/*           Multiply by inv(U). */	    dlatbs_("Upper", "No transpose", "Non-unit", normin, n, kd, &ab[		    ab_offset], ldab, &work[1], &scaleu, &work[(*n << 1) + 1], 		     info);	} else {/*           Multiply by inv(L). */	    dlatbs_("Lower", "No transpose", "Non-unit", normin, n, kd, &ab[		    ab_offset], ldab, &work[1], &scalel, &work[(*n << 1) + 1], 		     info);	    *(unsigned char *)normin = 'Y';/*           Multiply by inv(L'). */	    dlatbs_("Lower", "Transpose", "Non-unit", normin, n, kd, &ab[		    ab_offset], ldab, &work[1], &scaleu, &work[(*n << 1) + 1], 		     info);	}/*        Multiply by 1/SCALE if doing so will not cause overflow. */	scale = scalel * scaleu;	if (scale != 1.) {	    ix = idamax_(n, &work[1], &c__1);	    if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.) 		    {		goto L20;	    }	    drscl_(n, &scale, &work[1], &c__1);	}	goto L10;    }/*     Compute the estimate of the reciprocal condition number. */    if (ainvnm != 0.) {	*rcond = 1. / ainvnm / *anorm;    }L20:    return 0;/*     End of DPBCON */} /* dpbcon_ */
 |